CFE –SAP -3 Date : 08-02-2020 CFE-NO-65/APPCB/CFE/RO-VSP-HO-2012 Date : 08-02-2020

АРРСВ 🗙 🚭 АРРСВ	X Complaince -1 -Reg - ball.chinn X 🛛 🛞 New Tab X 🛛 +	- 0						
C 🎧 cb.ap.gov.in/PCBLive/ForIndustry/Submi	ssion_Compliance_of_EC_CFE_CFO_Direction	* 🖸 🛃 😔						
G Google 🦟 "TheSmartShop. 🔇 STOCKIST LOGIN 🐨 Book Flight Tickets, 🔇 EVD Web Portal 👩 Welcome to OEA Re 😰 IRCTC Tatkal Magic 📀 Drop me in Bookma								
	Lifestyle for Environment							
НОМ	E ABOUT US + FOR INDUSTRY + FOR PUBLIC + CONTACT US LOGINS +							
Compliance of EC/CFE/ CFO/ Direction	ns							
For submission of compliance reports by the Industries								
To submission of compliance reports by the mutuanes								
1.Compliance Report : *	2.CTE Order Number *							
CTE	CFE-NO-65/APPCB/CFE/RO-VSP-HO-2012							
3.CTE Order Issued On *	4.CTE Order Issued By *							
08/02/2020	Head Office							
5. District : *	6 LineOfAcitvity : *							
5. District : * Visakhapatnam	6.LineOfAcitvity : * Complex Fertilizer plant							
Visakhapatnam	Complex Fertilizer plant •							
Visakhapatnam 7. Name Of Industry : *	Complex Fertilizer plant 8. Address : *							
Visakhapatnam 7. Name Of Industry : * Coromandel International Ltd, (Formerly Coro	Complex Fertilizer plant 8. Address :* Sriharipuram, Malkapuram (PO), Visakhapatnam							
Visakhapatnam 7. Name Of Industry : * Coromandel International Ltd, (Formerly Coro 9. Email : *	Complex Fertilizer plant 8. Address : * Sriharipuram, Malkapuram (PO), Visakhapatnam 10. Phone : *							

🗸 G Google X 🚭 APPCB X	+	- 6 ×				
← → C ⋒ 😨 pcb.ap.gov.in/PCBLive/ForIndustry/Submission_Co	ompliance_of_EC_CFE_CFO_Direction	☆ D 💮 Verify it's you :				
器 G Google 🦟 JTheSmartShop: ③ STOCKIST LOGIN 🔻 Book Flight Tic HOME AB	pcb.ap.gov.in says Successfully Inserted	: 😧 Drop me in Bookma 🔇 Drop me in Bookma »				
5. District : * Visakhapatnam	ОК					
7. Name Of Industry : *	8. Address : *					
Coromandel International Ltd, (Formerly Coro	Sriharipuram, Malkapuram (PO), Visakhapatnam					
9. Email : *	10. Phone : *					
nagarajud@coromandel.murugappa.com	8790035522					
10. Status of Compliance : * Complied	11. Upload the Compliance Report : * Choose File CFE.pdf					
statement which is false in any material particular shall IDEBr5t	Vater (P CP) Act, 1974 giving any information which he is requise Punishable	uired to give under this Act, knowingly or willfully makes a				
Submit Know More	Government Portals	Get In Touch				

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : L24120AP1961PLC000892 GSTIN : 37AAACC7852K1ZC

EHS/APPCB/2024 - 153

Date: 30.12.2024

То

The Environmental Engineer, Andhra Pradesh Pollution Control Board, Regional Office, Behind RTA Office, Madhavadhara VUDA Colony, Visakhapatnam – 530 018

Sub: Submission of Six-monthly compliance report as on 30.12.2024 for Consent for Establishment order Issued for Expansion of Sulphuric Acid Plant- Reg

Ref: 1. CFE No - Order No.65 /APPCB/CFE/RO-VSP/HO/2012 – Date 08/02/2020 2. APPCB Notice No - PCB/RO-VSP/6 months compliance/2018 – Date 05. 07.2018

With reference to the above subject, herewith we are submitting the Six monthly condition wise compliance report as on 30.12.2024 of stipulated conditions in Consent For Operation issued vide Order No.65 /APPCB/CFE/RO-VSP/HO/2012 08/02/2020 of M/s Coromandel International Limited, Sriharipuram Visakhapatnam For Expansion of Sulphuric Acid Plant duly Certified by M/s TEAM Labs and Consultants NABL accredited Laboratory after carrying out site visit during the period 18.12.2024 and 19.12.2024 is enclosed for records.

This is for information please.

Thanking you,

Yours faithfully

For Coromandel International Limited

Gnanasundaram M Vice President & Head Mfg.

Enclosures: 1. CFE compliance report 2. NABL accreditation Certificate

National Accreditation Board for Testing and Calibration Laboratories

CERTIFICATE OF ACCREDITATION

TEAM LABS AND CONSULTANTS

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2017

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

B-115,116,117 & 509, ANNAPURNA BLOCK, ADITYA ENCLAVE, AMEERPET, HYDERABAD, TELANGANA, INDIA

in the field of

TESTING

Certificate Number:

TC-12956

Issue Date:

24/01/2024

Valid Until:

23/01/2026

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (To see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Name of Legal Entity: TEAM LABS AND CONSULTANTS

Signed for and on behalf of NABL

N. Venkateswaran Chief Executive Officer

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

Consent for Establishment order No: 65 /APPCB/CFE/RO-VSP/HO/2012 dt 08.02.2020

From the period of June -2024 to November-2024

S.No	Cons	ent Conditio	n		_	Compliance			
1	The p	proponent sh	all obtain Conse	nt for Ope	ration (CFO)	Noted and being complied.			
			quired Under Se						
			74 and under se						
			efore commence						
2			I properly maint			Complied			
			t Treatment Pla						
			equipment to re						
			ctric power sour						
			ol systems shall						
3			properly mainta			Complied.			
	1		ts shall be disch			Maintained dedicated stormwater			
	wate	r drains.		-		drains.			
4	The	ource of wat	er is GVMC & Se	a. The ma	iximum	Complied			
	perm	itted water o	onsumption is						
			expansion of Su	Iphuric aci	id plant				
		•	Consented quantity as	Proceed	·				
	Si.no	Purpose	per CFE (Exp) dt: 26.04.2019 (KLD)	Quantity (Expansion)	Quantity after expension (KLD)				
	1.	Process & Washes Industrial Cooling							
	1 1 1	Makeup) – fresh water	10.350						
	4.	Boiler Feed	(After expansion)	1800	10,350*				
	6	Domestic & other Customized fertilizer							
		plant Subtotal (1)	10,350*	1800	10,350*				
	7.	Industrial Cooling - Sea water.	84,600		64,600				
		Grand total	\$4,950	1800 KLD	\$4,850	n and			
		* Water consumption EC Order dt: 14.0	m shall be restricted to 10 1.2017.),350 KLD as me	ntioned in the	Yar Co			
				2010 - 17		I A			
						tul 7			

(ENGINEERS & CONSULTANTS IN POLLUTION CONTROL) NABL Accredited Laboratory Laboratory Recognised by Ministry Environment, Forests and Climate Change, Gol, New Delhi EIA Consultancy Accredided by NABET, Quality Council of India.

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

5		um waste water g			Complied
	the followir	ng afterexpansion	or Sulphuric ac	la plant:	
	SI. No Effluent	CEE (E-m) dalad	a per Proposed Quantity (Expansion)	Quantity after expansion (ICLD)	
	1. Process & weshings	1800		1800	
· ·	2. Cooling wat	tor 81,600	: 😁	81,000	
	3 Domestic	530		530	
	Total	83,930		43,930	
		ode of Disposal:			
	Source of effluent	Treatment	Node of final	disposal	
	washing effluents & Boiler Icooling tower blow	ETP consists of Equalization → Franction Lank 1 → Claritheoculator - 1 → Buffer La tk → Reaction tank 2 → Claritheoculator - 2 ~ Reaction Claritheoculator - 2 ~ Reaction La theoculator - 2 ~ Reaction	process effluents or reused within facts achieve Zero disc the rainy season".	shall be recycled ?	
	plant rejects	lanus 3 cum recusilization Itani, → Holding tank → Reaction tank → 4 & / Bor prést.	 In case of low load and during rainy s of effluent general acid post enhance which shall be tree 	eason, the quantity ed from Phosphoric ment is 1800 KLD ated in the existing charged along with ing blow down gedda surplus	
	- Once through cooling		into Neghadrigedda su oins Sea	plus course which	
	Domestic effluents	STP	Recycled / reused v preimiles	within the factory	
6	All the unit	s of the ETP & STI	systems shall	be imperviou	s Complied
	to prevent	ground water pol	lution. The ETP	& STP system	ns Third-party ETP & STP Reports,
		intained properly			enclosed as Annexure -01 for reference
7	Process eff	luents shall be rea	cycled / reused	within factor	y Complied
	premises to	o achieve zero dis	charge except (during the	
	rainy seaso	n, as stipulated in	Specific condition	tion no. (ix) o	f
	· ·	. 14.07.2017.			
8	During rain	y season, the trea	ated waste wat	er shall	Complied
192 X.		the water discha			in and
		o.2 of Schedule-B			8.
					Real Providence of the second se

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

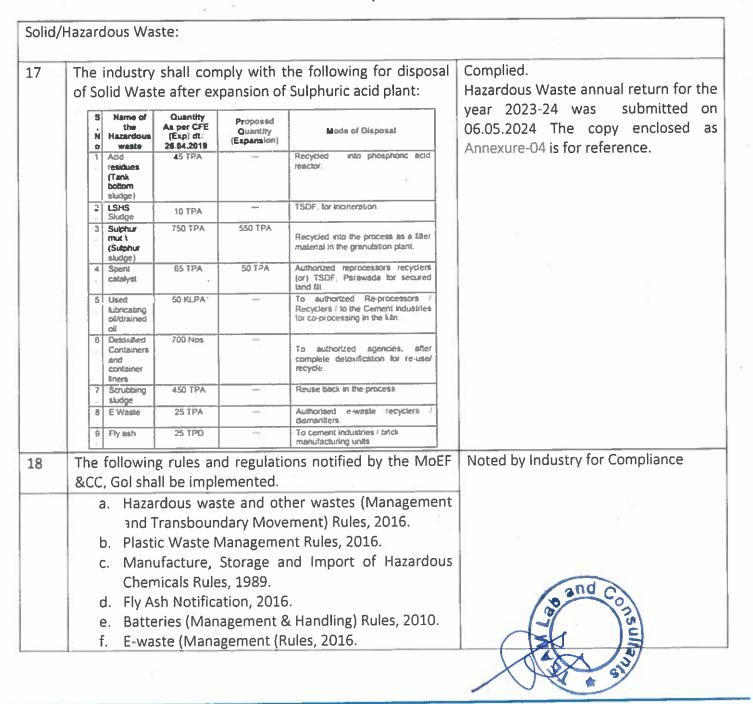
9	The industry shall provide magnetic flow meters with totalisers at the inlet and outlet of ETP.	Complied. Provided magnetic flow meters with totalizers at the inlet and outlet of ETP.
10	Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas. All pipe valves, sewers, drains shall be leak proof.	Complied
11.	The Air pollution Control equipment shall be maintained properly and shall complywith the following for controlling air pollution after expansion of Sulphuric acid plant:	Complied All Stacks are connected to CPCB & SPCB sites and also third-Party analysis was done once in month, enclosed as Annexure - 02 for reference

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

SI , N 0	Details of Stack	Attached to	Capacit y	Stack, height (Meters)	Details of Air Pollution Control Equipment		
3.	Stark -	Sulphuric Acid Plant (Old)	1700 TPD	69	Alkalı scrubber		
2.	Stack 2	Sulphuric Acid Plant (New)	400 TPD	50	Alkali scrubber		
3.	Stack – 3	Phosphoric Acid Plant	700 TPD	33	Evaporator followed by series of barometric condensors		
4,	Stack - 4	Rock Phosphate Grinding unit (Old Ball MB)	40 TPH	45	Bag filters		
5.	Stack - 5	Rock Phosphate Grinding unit (New Bati Mili)	20 TPH	45	Bag filters		
6.	Stack - 6 to 8	Complex fertilizer Plant Complex A- Train Complex B- Train Complex C- Train	3900 TPD	37.8 37.8 37.3	4 stage scrubbing system (for ammonia recovery and mult cyclone 6 Nos.) X 3 Nos.		
7.	Stack - 9	Customized fertilizer plant	300 TPD	30	Cyclones followed by wet		
		Drier (2 Nos.) & process coolers (2 Nos.) of customized fertilizer			scrubber		
8	Stack + 10	Oil Fired boiler through 5 MW T.G. Set	48 TPH	30 48	Cooler gases		
9	Stack - 11	Oil Fired Boller	31 TPH	30.48			
10	Stack - 12	Oil Fired Boller	1.5 TPH	30,48	anaran)		
11	Stack – 13	D G Set	6 MW	operating in an	Acoustic enclosures		
12	Stack - 14	D.G. Set*	43/07/	emergency condition			
13	Stack-	Phosphoric Acid Plant	700 TPD	33	Evaporator tollowed by		

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com


Coromandel International Limited, Visakhapatnam

		-					series of barometric condensers fumes scrubber		
		14	Stack 16	Rock Phosphale grinding Units	75 TPH	- 45	Bag Filters		
		15	Stack 17	Coal Fired Boiler & Back pressure Turbine	40 TPH & 5 MW	56	ESP		:
		16	Stack- 18	Rock Phosphate grinding unit	30 TPH	30	Bag fiters		
	New s			Se expansion : Subhuric Acid Plant	1500 T	PD 60 m.	Aikali scrubber	-	
12.	The	_	dusti		perly	maintai	in 400 N	/TPD	Complied
	evap	ora	tion	system for Pho tem as stipulat	sphoric	: Acid ir	ncluding Flu	orine	
13.			· · ·	oort with remo					Complied . All stacks provided with sampling ports
	distance of 8 times the diameter of the stack from the nearest constraint such as bends etc. a platform with suitable ladder shall be provided below 1 meter of sampling port to accommodate three persons with instruments. A 15 AMP 250 V plug point shall be provided on the platform.							with er of with vided	
14	facili	ty	with	shall properly auto recordi reat the proce	ing sys	tem to			Complied. Installed online pH measuring facility with auto recording system.
15	The	in	dustr	y shall imple gitive emissior	ment a	dequat		es to	Noted by Industry and will comply
16	The proponent shall ensure compliance of the National Ambient Air quality standards notified by MoEF, Gol vid notification No.GSR.826 (E), dated.16-11-2009 durin construction and regular operational phase of the project at the periphery.							l vide luring	Complied. Third-Party NAAQS reports, found to be complying with standards notified Annexure-03 for reference
			3					-	

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

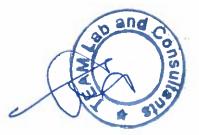
Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

Industry for Compliance
all EC, CFE, and CF
enclosed as Annexure-05 fo
rence
ab and Co
9
ab and Conservation
jul jul

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam


21 The industry submitted a copy of letter stating that the MoEF&CC, Gol, New Delhi vide lr.dt:30-05-2018 addressed to M/s. Southern Petro Chemical Industries Corporation (SPIC) clarified that the intermediate product (Phosphoric Acid) is not covered under the purview of the ELA notification 2006 and as such there is no requirement of Environmental Clearance to the said project as stand alone. Similarly, in this case also EC is not required as Sulphuric Acid is one of the raw materials/intermediates for manufacture of Chemical fertilizer.	
22 The industry shall submit a report on recycling of treated effluent into the process to achieve zero discharge except during rainy season.	Complied The Present Industry is following the Zero discharge concept
23 Green belt shall be developed all along the boundary & vacant spaces with tall growing tress with good canopy and it shall not be less than 33% of the total area.	
24 Concealing the factual data or submission of false information / fabricated data and failure to comply with any of the conditions mentioned in this order attracts action under the provisions of relevant pollution control Acts.	
25 Notwithstanding anything contained in this conditional letter or consent, the Board hereby reserves its right and power Under Sec.27(2) of Water (Prevention and Control of Pollution) Act, 1974 and Under Sec.21(4) of Air (Prevention and Control of Pollution) Act, 1981 to revoke the order, to review any or all the conditions imposed herein and to make such modifications as deemed fit and stipulate any additional conditions.	
26 Any person aggrieved by an order made by the State Board Under Section 25, Section 26, Section 27 of Water Act, 1974 or Section 21 of Air Act, 1981 may within thirty	2000
	ener

Branch Office : # 24-4-11, Darul Fateh Building, 1st Floor, Harbour Road, Visakhapatnam-530 001. Ph. : (O) 0891-2748699, Cell : 9849033397, E-mail : teamlabsvizag@gmail.com

Coromandel International Limited, Visakhapatnam

days from the date on which the order is communicated	
to him, prefer an appeal as per Andhra Pradesh Water	
Rules, 1976 and Air Rules, 1982, to such authority	
(hereinafter referred to as the Appellate Authority)	
constituted Under Section 28 of Water (Prevention and	
Control of Pollution) Act, 1974 and Section 31 of the Air	
(Prevention and Control of Pollution) Act, 1981.	

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

	Test Report No.		TLC/V/Env/CFL/24/1124 dt.02.11.2024						
	Description of Test		ETP Outlet water Analysis						
	Name of the client	Corom	Coromandel International Limited, Visakhapatnam						
	on of sampling		ETP Out let samples						
1	Date of Collection		16-11-2024						
	<u> </u>				NOVEMBER -2024				
S.No	Parameter	units	ETP Outlet	APPCB	Protocol				
•				LIMIT					
1	PH	-	7.6	6.5-8.5	IS:3025 Part 11-1983				
2	Total Suspended Solids	mg/l	20	100	IS:3025 Part 17-1984				
3	Oil & Grease	mg/l	NIL	10	IS:3025 Part 39-1991				
4	Ammonical Nitrogen	mg/l	12	50	APHA4500C				
5	Free Ammonical Nitrogen	mg/l	0.2	4.0	APHA4500C				
6	Total Kjeldal Nitrogen	mg/l	30	75	APHA4500B				
7	Nitrate Nitrogen	mg/l	0.1	20	APHA4500D				
8	Cyanides as CN	mg/l	<0.1	0.1	SM 4500CN E				
9	Arsenic as As	mg/l	<0.02	0.2	SM3125				
10	Vanadium as V	mg/l	<0.1	0.2	SM3125				
11	Hexa valent Chromium as Cr 6+	mg/l	<0.02	0.1	SM3125				
12	Total Chromium	mg/l	<0.01	2.0	SM3125				
13	Fluoride as F-	mg/l	1.0	10	SM 4500 F- D				
14	Phosphates as P	mg/l	0.8	5	APHA4500D				
15	BOD	mg/l	14	30	IS:3025 Part 44-1993				
16	COD	mg/l	70	250	IS:3025 Part 58-2006				
17	Temperature difference between intake water and outlet	0C	30	NA	and Aller and Aller and				

For TEAM Laiss and Consultants

ORIGINAL

TEAM Labs and Consultants

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

	Report No.		TLC/V	/Env/CFL/2	TLC/V/Env/CFL/22/0824 dt.02.12.2024					
	ription of T		STP O ı	STP Outlet water Analysis						
Nam	e of the clie	ent	Corom	Coromandel International Limited, Visakhapatnam						
	tion of sam		and the second se	ut Let samp	les					
Date	of Collection		16.11.2							
		Analysis repo	ort of ST	POutlet wa				MBER-2024		
1	PH				7.6	6.5-8.5		5 Part 11-1983		
2		pended Solids		mg/l	18	100		5 Part 17-1984		
3	Oil & Gr			mg/l	NIL	10		5 Part 39-1991		
4	Ammonio	al Nitrogen		mg/l	5.5	50	A	APHA4500C		
5	Free Am	nonical Nitroger	mg/l	0.1	4.0	A	APHA4500C			
6	Total Kje	ldal Nitrogen	mg/l	18	75	A	APHA4500B			
7	Nitrate N	itrogen		mg/l	0.1	20	A	APHA4500D		
8	Cyanides	as CN	mg/l	<0.1	0.1	S	M 4500CN E			
9	Arsenic a			mg/l	<0.02	0.2		SM3125		
10	Vanadium	n as V		mg/l	<0.1	0.2		SM3125		
11	Hexa vale	ent Chromium a	s Cr ⁶⁺	mg/l	<0.02	0.1		SM3125		
12	Total Chi	omium		mg/l	<0.01	2.0		SM3125		
13	Fluoride	as F		mg/l	0.5	10	S	M 4500 F- D		
14	Phosphat	osphates as P		mg/l	0.2	5	A	APHA4500D		
15	BOD			mg/l	17	30	IS:30	25 Part 44-1993		
16	COD			mg/l	75	250	IS:30	25 Part 58-2006		
17	Temperature difference between intake water and outlet			θC	03	5°C				
18	Fecal Col	iform (FC)		1000MP N/100ml	500	<1000				

For TEAM Labs and Consultants

Form-No. TCL/L/GF/RF-138

TEAM Labs and Consultants

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

	Test Report No	TLC/V/Env/CIL/16/1124 dt.02.12.2024								
1	Description of Test	Source Emission Monitoring inside the CIL								
1	Name of the client	Coromandel International Limited, Visakhapatnam								
L	ocation of sampling	stacks attached	to respective plants as p	er details given						
SOUR	CE/ STACK EMISSION	MONITORING	FOR THE MONTH OI	FNOVEMBER-202	4					
S.No.	Stack attached to	Flow rate NM ³ /Hr	parameters	Conc. mg/NM ³	APPCB Standard Limit					
1	Complex A	282609	Particulate matter	18	45 mg/NM ³					
			Ammonia	62	165.0 mg/NM ³					
			Fluoride	0.9	4.0 mg/NM ³					
2	Complex B	257666	Particulate matter	18	45 mg/NM ³					
			Ammonia	68	165.0 mg/NM ³					
			Fluoride	1.0	4.0 mg/NM ³					
			Particulate matter	20						
3	Complex C	215727			45 mg/NM ³					
			Ammonia	48	165.0 mg/NM ³					
			Fluoride	1.1	4.0 mg/NM ³					
4			Sulphur dioxide	0.304Kg/MT (220mg/NM ³)	1 Kg/MT					
	Sulphuric acid plant- 1	97903	Sulphur trioxide	0.028Kg/MT (20mg/NM ³)	0.35 Kg/MT					
			Acid mist	Nil	20 mg/NM ³					
5	Sulphuric acid plant-	26619	Sulphur dioxide	0.167Kg/MT (105mg/NM ³⁾	0.65 Kg/MT					
	П		Sulphur trioxide	Nil	0.35 Kg/MT					
			Acid mist	Nil	20 mg/NM ³					
6	Phosphoric acid	131104	Particulate matter	28	50 mg/NM ³					
	plant-1		Fluoride	4.3	20 mg/NM ³					
7	Rock grinding unit	6653	Particulate matter	42	50 mg/NM ³					
	(N-1)PAAP1		Total Fluoride	3.8	20 mg/NM ³					
8	Rock grinding unit	7067	Particulate matter	35	50 mg/NM ³					
	(N-3)PAAP2		Total Fluoride	3.1	20 mg/NM ³					
9	Wharf Boiler	10769	Particulate matter	42	115 mg/NM ³					
	Phosphoric acid	37794	Particulate matter	30	50 mg/NM ³					
10	plant-2		Total Fluoride	3.9	20 mg/NM ³					
	Rock grinding unit	6237	Particulate matter	47	50 mg/NM ³					
	(N-2)PAP1	1000	Total Fluoride	4.0	20 mg/NM ³					
11										
12	New SAP-3	47948	Sulphur dioxide	0.041Kg/MT (60mg/NM ³)	1 Kg/MT					
			Sulphur trioxide	Nil	0.35 Kg/MT					
			Acid mist	Nil	20 mg/NM ³					
13	DG1	11426	Particulate matter	43	DIB HIM NAN					
14	DG2	1180	Particulate matter	48	1.5 mg/NM?					

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

Test Repor	t No.	TLC/V/Env/CIL/17/1124 dt.02.12.2024							
Description		Ambient Air quality M	Ionitoring inside	the CIL					
Name of the		Coromandel International Limited, Visakhapatnam Stations as per details given							
Location of s									
Period of Mo	nitoring	For the Month of NOV	For the Month of NOVEMBER-2024						
Summary	f Amhient Air a	uality Monitoring Data for the Month of NOVEMBER-2024							
Parameters		AAQ-1 Station at	AAQ-2	AAQ-5 Station at Gate -15					
Farameters		the Top of Cafeteria	Station near DG sets	(Near Bagging plant)					
PM2.5	Minimum	32	35	33					
I [VI 2.5	Maximum	41	42	41					
	98%tile	41	42	41					
	Average	37	39	37					
PM 10	Minimum	66	69	64					
$\mu g/M^3$	Maximum	80	84	78					
μg/ivi	98%tile	80	84	78					
	Average	74	76	73					
	Minimum	15.0	20.5	14.2					
SO ₂	Maximum	23.0	25.4	16.6					
μg/M ³	Average	19.5	23.3	15.5					
μEritt	98%tile	23.0	25.4	16.6					
	Minimum	17.4	20.9	16.3					
NOX	Maximum	22.7	25.5	19.5					
$\mu g/M^3$	98%tile	22.7	25.5	19.5					
hfb/ter	Average	20.3	22.9	17.5					
	Minimum	0.020	0.04	0.02					
NH ₃	Maximum	0.04	0.06	0.03					
mg/M^3	98%tile	0.04	0.06	0.03					
ting/ tvi	Average	0.035	0.046	0.025					
03	Minimum	15	16	15					
μg/M ³	Maximum	22	24	20					
hEint	98%tile	22	24	20					
	Average	19	21	. 17					
CO	Minimum	0.1	0.2	0.1					
mg/M ³	Maximum	0.3	0.3	0.3					
	98%tile	0.3	0.3	0.3					
	Average	0.22	0.25	0.2					
Pb μg/M ³	<0.05	< 0.05	< 0.05	<0.05					
C6H6 ng/M ³	<0.05	< 0.05	< 0.05	<0.05					
B(a)P ng/M ³	<0.05	<0.05	< 0.05	<0.05					
As ng/M ³	<0.05	< 0.05	< 0.05	<0.05					
Ni ng/M ³	<0.05	< 0.05	0.00						

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

Test Rep		TLC/V/Env/CIL/18/1124	dt.02.12.2024			
Descriptio	n of Test	Ambient Air quality Monitorin	g inside the CIL unit			
Name of 2	he client	Coromandel International Limited, Visakhapatnam				
Location of	sampling	Stations as per details given	, · · · · · · · · · · · · · · · · · · ·			
Period of N		For the Month of NOVEMBER	-2024			
		For the Month of to Philiper	-2024			
Summary o	of Ambient Air q	uality Monitoring Data for the Mo	onth of NOVEMBER-2024			
Parameters	<u>_</u>	AAQ-4 Station at Warf	AAQ-5 Station near VST			
PM2.5	Minimum					
1 1412.0		32	37			
	Maximum	40	44			
	98%tile	40	44			
	Average	37	40			
PM 10	Minimum	64	72			
μg/M³	Maximum	82	84			
	98%tile	82	84			
	Average	74	77			
	Minimum	15.0	16.9			
SO ₂	Maximum	17.2	19.5			
μg/M³	Average	16.0	17.9			
·	98%tile	17.2	19.5			
	Minimum	17.5	18.5			
NOx	Maximum	19.4	20.2			
μg/M³	98%tile	19.4	20.2			
	Average	18.5	19.7			
	Minimum	0.02	0.04			
NH ₃	Maximum	0.03	0.06			
mg/M ³	98%tile	0.03	0.06			
	Average	0.024	0.46			
03	Minimum	15	16			
μg/M ³	Maximum	20	20			
	98%tile	20	20			
	Average	17	18			
CO	Minimum	0.2	0.2			
mg/M ³	Maximum	0.3	0.3			
	98%tile	0.3	0.3			
	Average	0.25	0.28			
Pb μg/M ³	<0.05	<0.05	<0.05			
C6H6 ng/M ³	<0.05	< 0.05	<0.05			
B(a)P ng/M ³	<0.05	<0.05	<0.05			
As ng/M ³	<0.05	<0.05	1.05.00			
Ni ng/M ³	< 0.05	<0.05	90.05 C			

For TE sultants S

EHS/APPCB/2024-097

The Member Secretary,

Pushpa Hotel Centre,

Vijayawada-520 010

A.P. Pollution Control Board,

D.No.33-26-14D/2, Near Sunrise Hospital,

Chalamalavari Street, Kasturibaipet,

То

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : t24120AP1961PLC000892 GSTIN : 37AAACC7852K12C

Date:27.09.2024

RN5418000661N IVR:B278541800066 RL NALKAPURAN S.O <539011> Counter No:1.27/09/2024.14:14 To:THE MEMBER SE.APPCB VIJAYAMADA PIN:520010. Venkateswarapuram S.O From:EHS HOD COR.FORM 5 CIL VIZAG Wt:240ums.REG=17.0 Amt:90.86.Tax:13.86.Amt.Paid:91.00(Cash) (Track on NMM.indiapost.cov.in) (Track on NMM.indiapost.cov.in) (Track on NMM.indiapost.cov.in)

Sub: Submission of Environmental Statement in Form-V for the financial year 2023-24 as per the Environmental Protection Act -1986 reg.

OIC

Ref: 1. Consent Order No: APPCB/VSP/65/CFO/HO/1967 - 04/08/2023

Dear Sir,

We are enclosing herewith the Environment Statement for the financial year 2023-24 ending with 31" March 2024 in prescribed Form-V with respect to Coromandel International Ltd. along with relevant annexures.

This is submitted as per the guidelines of Environment protection act -1986

Thanking you

Yours faithfully For Coromandel International Limited

M. Gnanasundaram VP & Head - Manufacturing

NAG

Encl: As above

Cc: 1. The Joint Chief Environmental Engineer, Zonal Office, APPCB, Visakhapatnam-18

2. The Environmental Engineer, Regional Office, APPCB, Visakhapatnam-18

Registered Office : Coromandel House, 1-2-10 Sardar Patel Road, Secunderabad - 500 003 Telangana, India Tel : 91-40-27842034 / 27847212 Fax : 91-40-27844117 E-maii : mail@coromandel.murugappa.com

muruaappin

lon

Post Box No. 1116, Sriharipuram, Małkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : L24120AP1961PLC000892 GSTIN : 37AAACC7852K1ZC

Date:27.09.2024

EHS/APPCB/2024-097

То

The Member Secretary, A.P. Pollution Control Board, D.No.33-26-14D/2, Near Sunrise Hospital, Pushpa Hotel Centre, Chalamalavari Street, Kasturibaipet, Vijayawada-520 010

Sub: Submission of Environmental Statement in Form-V for the financial year 2023-24 as per the Environmental Protection Act -1986 reg.

Ref: 1. Consent Order No: APPCB/VSP/65/CFO/HO/1967 - 04/08/2023

Dear Sir,

We are enclosing herewith the Environment Statement for the financial year 2023-24 ending with 31st March 2024 in prescribed Form-V with respect to Coromandel International Ltd. along with relevant annexures.

This is submitted as per the guidelines of Environment protection act -1986

Thanking you

Yours faithfully For Coromandel International Limited

M. Gnanasundaram VP & Head - Manufacturing

Encl: As above

Cc: 1. The Joint Chief Environmental Engineer, Zonal Office, APPCB, Visakhapatnam-18

2. The Environmental Engineer, Regional Office, APPCB, Visakhapatnam-18

FORM – V

(See rule 14)

Environmental Statement (Audit Report) for the financial year ending 31st March 2024

PART – A

(1	Name and address of the	Coromandel International Limited			
	owner/occupier of the	Post Box No. 1116, Sriharipuram,			
	industry, operation or process.	Malkapuram Post			
		Visakhapatnam-530 011			
		Occupier: Mr. Sankarasubramania	n (MD & CEO)		
11	Production Capacity	Complex Plant / Customised/ Wat	er		
		Soluble Fertiliser / Micro Nutrient	s /		
		Chelated Nutrients / Micronised			
		Sulphur / Urea Phosphate	: 4210 TPD		
		Sulfuric Acid Plant-I & II	: 2100 TPD		
		Sulfuric Acid Plant – III	: 2000 MTPD		
		Phosphoric Acid Plant	: 1600 MTPD		
		Bentonite Sulfur	: 200 MTPD		
		Sulpho Zinc/Boron	: 50 MTPD		
		Fertilizer Pilot Plant	: 19 MTPD		
		Phosphoric Acid Pilot Plant	: 0.83 TPD		
		By Products:			
		Gypsum	: 8000 MTPD		
		Hydrofluorosilicic Acid	: 40 MTPD		
111	Year of Establishment	1967	*		
II)	Date of the last Environmental	28/09/2023			
	Audit Report submitted.				

PART – B Water and Raw Material Consumption

I)	Water consi	umption m ³ /d (a	verage break-up) year 2023-2	24	
	Process	: 6331			
	DM WATER	: 2744			
	Cooling	: 1971	SE	AWATER : 84600 (Apr-Jul-23)	
	Domestic	: 625	100600 (Aug-23 - Mar-24)		
			Water consumption per unit of products M ³ /MT		
			During the previous	During the current financial	
	Name o	of products	financial year	year	
			(1) 2022-23	(2) 2023-24	
	Complex Fer	tilizer	3.37	3.79	
11	Raw materia	I consumption			
	Name of	Name of	Consumption of raw materi	al per unit of output (MT/MT)	
	raw		During the current	During the current financial	
_	materials	products	financial year 2022-23 year 2023-24		
			Ref: Annexure – 1		

PART – C Pollution generated (Parameters as specified in the consent issued)

I)	Pollutants	Quantity of pollutants discharged (mass/day)	Concentrations of pollutants discharges (mass/Volume)	Percentages of variation from prescribed standards with reasons
	(a) Water (b) Air	Re	f: Annexure – 2	

PART – D Hazardous Wastes (As specified under hazardous wastes Management and Handling Rules, 1989 and amendment 2016)

		Total Quantity			
Stream	Name of the Hazardous waste	During the previous financial year 2022-23	During the current financial year 2023-24		
a) From process					
34.2 of Schedule-I	Acid residues (Tank bottom sludge)	43.5	25		
34.2 of Schedule-I	LSHS Sludge	12.87			
Class B (Sl. No. 37) of Schedule-II	Sulfur muck (sulfur sludge)	695	940		
18.1 of Schedule-I	Spent catalyst	56.088	48.820		
5.1 of Schedule-I	Used lubricating oil/Drained oil	12.125	13.620		
33.1 of Schedule-I	Detoxified containers and container liners	0	2438		
37.1 of Schedule-I	Scrubbing sludge	695	395		
35.3 of Schedule - I	ETP Sludge	755	490		
28.4 of Schedule –-I Off specified, expired chemicals & lab chemicals etc.		0	0		
<u>ت</u>	Glass Wool	0	0		
	Insulation Waste	0	0		
b) F	rom pollution control facilities				

Note: All the above the Investment data including Sulphuric acid storage & handling facilities at Wharf Area (Consent Order No: APPCB/VSP/65/HO/CFO/2020 – 23/12/2020) and Visakha Terminal (Consent Order No: 7055/VSP/APPCB/ZOVSP/CFO/2021- 01/11/2021)

PART –E Solid Wastes

		Total Quar	ntity (MT)		
		During the previous financial year 2022-23	During the current financial year 2023-24		
a)	From process	2			
b)	Process pollution control facilities	Not Applicable			
c)	Quantity recycled or re-utilized				
	i) sold				
	ii) Disposed				

PART – F

Please specify the characteristics (in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes

a) Maintaining Form-3 and Form-10 (Hazardous Manifest) according to Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016.

b) Form-IV Hazardous waste annual returns regularly furnishing to APPCB.

S NO	HAZ Cat. No	Hazardous Waste	Disposal Practice		
1	34.2 of Schedule-I	Acid residues (Tank bottom sludge)	Reused in the phosphoric acid plant		
2	34.2 of Schedule-I	LSHS Sludge	TSDF for incineration or authorized cement manufacturing units for co processing		
3	Class B (Sl. No. 37) of Schedule-II	Sulfur muck (sulfur sludge)	Reused into granulation plant after grinding		
4	18.1 of Schedule-I	Spent catalyst	Authorized recyclers or TSDF		
5	5.1 of Schedule-I	Used lubricating oil/Drained oil	Re-processors or recyclers of waste oil		
6	33.1 of Schedule-I	Detoxified containers and container liners	No net generation		
7	37.1 of Schedule-I	Scrubbing sludge	Reused in the granulation plant		
8	35.3 of Schedule - I	ETP Sludge	Reused in Phosphoric acid plant		
9	28.4 of Schedule –I	Off specified, expired chemicals & lab chemicals etc.	TSDF for incineration or authorized cement manufacturing units for co processing		
10	33.2 of Schedule-I	Glass wool	TSDF for incineration		

11	33.2 of	Insulation puf	TSDF for incineration
	Schedule-I		

Note : All the above the Investment data including Sulphuric acid storage & handling facilities at Wharf Area (Consent Order No: APPCB/VSP/VSP/65/HO/CFO/2020 – 23/12/2020) and Visakha Terminal (Consent Order No: 7055/VSP/APPCB/ZOVSP/CFO/2021-01/11/2021) **Ref: Annexure – 3**

PART – G

Impact of the pollution control measures on conservation of natural resources and consequently on the cost of production.

On account of pollution control measures implemented in last two years following savings could be realized.

Material saved					Savings(Rs. Lakhs/annum)	Quantity(per annum)
Water	recycled	by	rain	water	19.22	29622 m3
harvesting						

PART ~ H

Additional investment proposal for environmental protection including abatement of pollution:

SI No	Title of Project	Year	Annual Electrical Saving (kWh)	Electrical Saving kW	Electrical Energy Savings Rs	Total Energy Savings MTOE	Total Energy Savings Rs	Investment Rs Million	Payback months	Comments
1	Installation of Waste Heat Boiler and Captive Steam Turbo Generator in SAP-III	2023- 24	72765000	8570	466	20811	466	4300.0	111	Installation of 87.5 MT/Hr Waste heat Boiler at 69kgf/cm2g & 485 oC & 15.25 MW Condensing Steam Turbo Generator III. High pressure & temperature steam turbine results in lower Specific Steam Consumption of 4.0 MT / MWH. Old Condensing turbine was medium pressure 31kgf/cm2g 315oC with 5.8 MT/MW Specific Steam Consumption. Innovation enabled higher power generation
2	Installation of 11KV Automatic Power Factor controlling system	2023- 24	1703451	194	11	487	11	29.5	32	Installation of 11KV Automatic Power Factor controlling system. New generation technology considered as an alternative to conventional technology / method to limit the short circuit levels & control power factor at existing substations. Existing grid power factor maintaining at 0.97 lag, it needs to be 0.995 lag
3	Replacement of age old rewound motors by IE3 motors	2023- 24	168102	21	1.08	48	1.1	4.4	49	Replacement of 16 age old rewound motors by IE3 motors
4	Replacement of 41 nos age old window AC units with 3 star rating units	2023- 24	48441	11	0.31	14	0.31	2.384	92	Deployed 3 star rating Units replacing 41 nos age old window AC units

5	Kaizen - Installation of AC controls, close to respective AC Units	2023- 24	21406	5	0.14	6	0.14	0	0	Kaizen - Installation of AC controls, closure to respective AC Units, helped avoid contnuous run of other Air Conditioner
Conservation Conservation	TOTAL		74706400	8802	478.1	21366	478.1	4336.3	109	

Note : All the above the Investment data including Sulphuric acid storage & handling facilities at Wharf Area (Consent Order No: APPCB/VSP/VSP/65/HO/CFO/2020 – 23/12/2020) and Visakha Terminal (Consent Order No: 7055/VSP/APPCB/ZOVSP/CFO/2021-01/11/2021)

Environment Improvement Measures Refer Annexure - 04

PART – I

Any other particulars in respect of environment protection and abatement of pollution:

A report covering various efforts made by Coromandel International Limited for control of environmental pollution along with details of processes adopted in various units is given in savings made by some other activities and savings through Energy Conservation.

Refer Annexure - 05 & 06

Accolades

2023-24

Certifications

ISO50001 Certification

NABL Accreditation to Quality Laboratory

INTERNATI	ONALI	LIMITED	
has been assessed and accred	lard in accur	rdance with the stand	Ine
ISO/IEC	C 17025:	2017	
"General Requirements fo Calibration			esting &
for Its	facilities a	ŧt	
MURARIPERAN, MARAPERAN (1997)	A BURNER	ATVAN, ANDRES PELI	NEMI, INDIA
in t	he field of		
TE	STING		
Cardian South: IC(1941			
loss link: 1945363		Valid Lindle	18.07.2025
File certificate runnins valid for the Jonge of Ar- tabilitative compliance to the above of £1a are the ways of accordinate of the binary	indert & the	spinopal preprintments of	rsail.
Name of Grant Monitor, CEDEDAL AND	ADONE L2	40 ND	
Signed for an	d on byhall	of NABL	
(8443426)			

Safety, Health & Environment

2024-25

Your faithfully, For Coromandel International Limited,

D. H.

M. Gnanasundaram VP & Head – Manufacturing

			A	nnexure-1
Raw Material	Product Name/ Complex Grade	Financial Year 2021-22 MT/MT	Financial Year 2022-23 MT/MT	Financial Year 2023-24 MT/MT
Sulfuric acid	28:28:00	0.0378	0.0230	0.0198
Phosphoric acid	28:28:00	0.2869	0.2842	0.2853
Ammonia	28:28:00	0.1320	0.1271	0.1235
Urea	28:28:00	0.4012	0.4104	0.4171
Ammonia	14:35:14	0.1730	0.1730	
Potash	14:35:14	0.2419	0.2452	No Production
Phosphoric acid	14:35:14	0.3607	0.3612	
Ammonia	20:20:00	0.2290	0.2254	0.2260
Phosphoric acid	20:20:00	0.2051	0.2030	0.2038
Sulfuric acid	20:20:00	0.3936	0.3498	0.3995
Ammonium Sulphate	20:20:0	0	0.044	0
Urea	20:20:00	0.0337	0.0418	0.0397
Sulfur	Sulfuric acid	0.3291	0.3266	0.3258
sulfuric acid	Phosphoric acid	2.7884	2.8137	2.8074
Rock phosphate	Phosphoric acid	3.3597	3.402	3.441
Ammonia	10:26:26	0.1236	0.1183	
Potash	10:26:26	0.4472	0.4581	
Phosphoric acid	10:26:26	0.2670	0.2636	
Ammonia	15.15.15.9		0.1621	No Production
Phosphoric acid	15.15.15.9	No Production	0.1529	
Potash	15.15.15.9	NO PIOUUCION	0.2651	
Sulfuric acid	15.15.15.9		0.2636	
Phosphoric acid	24.24.00.8S	0.2488	0.2479	0.2474
Sulfuric acid	24.24.00.85	0.1763	0.1140	0.0995
Ammonia	24.24.00.85	0.1513	0.1482	0.1460
Urea	24.24.00.85	0.2812	0.2826	0.2867
Sulfur	24.24.0.85	0.0792	0.0542	0.0505
Phosphoric acid	UAP 20-20-0	0.2077		
Sulfuric acid	UAP 20-20-0	0.3537	No Production	No Production
Ammonia	UAP 20-20-0	0.1930		
Urea	UAP 20-20-0	0.1039		

Annexure - 2

		Environment	Quality Report- Eff	fluent: 2023-24	
I)	Pollutants	Quantity of pollutants discharged (mass/day)	Concentrations of pollutants discharges (mass/Volume)	APPCB limit mg / lt.	Percentages of variation from prescribed standards with reasons
	Water				Teasons
1	рН		7.50	6.5 - 8.5	
	Ammonical			50 mg/l	
2	Nitrogen		13.92		
	Free Ammonical			4 mg/l	
3	Nitrogen		0.1		
	Total Kjeldahl			75 mg/l	
4	Nitrogen		23.17		
5	Nitrate Nitrogen		0.1	20 mg/l	
6	Cyanide as CN		BDL	0.1 mg/l	
7	Vanadium as V		BDL	0.2 mg/l	
8	Arsenic as As		BDL	0.2 mg/l	No Variation
9	Phosphate as P		0.75	5 mg/l	from Standards
	Suspended			100 mg/l	
10	solids		19.67		
11	Oil and Grease		BDL	10 mg/l	
12	Fluoride as F		0.94	10 mg/l	
	Hexavalent			0.1 mg/l	
13	Chromium as Cr		BDL		
	Total Chromium			2.0 mg/l	
14	as Cr		BDL		
15	BOD		10.83	30 mg/l	
16	COD		58.50	250 mg/l	
	Air				
		Emissions,	Emissions,	APPCB limit	
		ТРА	mg/Nm ³	mg/Nm ³	
1	Complex plant A				
	Ammonia	126.20	68.79	165	
	Fluoride	0.03	0.71	4	No Variation
	SPM	30.47	16.61	45	- from Standards
2	Complex plant B				
	Ammonia	138.78	75.70	165	
	Fluoride	0.04	0.85	4	
	SPM	27.65	15.10	45	

3	Complex plant C			
-	Ammonia	69.55	37.22	165
	Fluoride	0.03	0.73	4
	SPM	13.29	7.11	45
4	Phosphoric acid p	lant-I		
	Total Fluoride	0.1	2.05	20
	SPM	7.65	6.22	50
5	Phosphoric acid p	lant -II		
	Total Fluoride	0.14	2.72	20
	SPM	0.96	3.87	50
6	Sulfuric acid plant	-1		
	Sulfur di oxide	7.02	7.69	1 kg/ MT of product
	Sullui ul Oxide			0.35 kg/
	Sulfur trioxide	-	Nil	MT of product
	Acid mist	_	Nil	20
7	Sulfuric acid plant	- 11		
	Sulfur di oxide	2.04	7.64	0.65 kg/ MT of product
	Sulfur trioxide	-	Nil	0.35 kg/ MT of product
	Acid mist	-	Nil	20
8	Sulfuric acid plant	- 111	1	1
	Sulfur di oxide	3.91	5.57	1 kg/ MT of product
	Sulfur trioxide	-	Nil	0.35 kg/ MT of product
	Acid mist	-	Nil	20
8	Boiler-PM	2.20	8.42	115

Parameter	РСВ
	Standards
рН	6.5 – 8.5
Ammonical Nitrogen	50 mg/l
Free Ammonical Nitrogen	4 mg/l
Total Kjeldahl Nitrogen	75 mg/l
Nitrate Nitrogen	20 mg/l
Cyanide as CN	0.1 mg/l
Vanadium as V	0.2 mg/l
Arsenic as As	0.2 mg/l
Phosphate as P	5 mg/l
Suspended solids	100 mg/l
Oil and Grease	10 mg/l
Fluoride as F	10 mg/l
Hexavalent Chromium as Cr	0.1 mg/l
Total Chromium as Cr	2.0 mg/l
BOD	30 mg/l
COD	250 mg/l

	AIR EMISSION STANDA	ARDS						
S.No	Parameter	APPCB limit mg/Nm3						
1	Complex plants							
	Ammonia	165						
	Fluoride	4						
	SPM	45						
2	Phosphoric acid plants							
	Total Fluoride	20						
	Particulate matter	50						
3	Sulfuric acid plant-I	_						
	Sulfur di oxide	1 kg/MT of prod						
	SO3	0.35 kg/MT of prod						
	Acid mist	20						
4	Sulfuric acid plant- II							
	Sulfur di oxide	0.65 kg/MT of prod						
	SO3	0.35 kg/MT of prod						
	Acid mist	20						
	Sulfuric acid plant- III							
	SO2 (Sulfur di oxide)	1 Kg/MT of Product						
	SO3	SO3						
5	Acid mist	Acid mist						
6	Rock Grinding	50						
7	Boiler Stack	115						

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 Oll, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz : L24120AP1961PLC000892 CIN GSTIN: 37AAACC7852K1ZC

Date: 06.05.2024

EHS/APPCB/2024-040

LH5/AFFCD/2024-040		Duter officere -
	1	wave surgeousede where interesting thirds
То	en :	अस्तीय अग
The Environmental Engineer,	1 miles 1	RH4611322351H IVR:827846113223
A.P. Pollution Control Board,		RL MALKAPURAN S.8 (530011)
D.No. 33-26-14 D/2,		Counter No:1.07/05/2024.10:33
Near Sunrise Hospital,		TO: THE ENVIRONME. APPCB KASTURIBAI
Pushpa Hotel Centre,		PIN:520010, Venkateswaraburam S.O
Chalamalavari Street,	CY	From:CORONANDEL .EHS HOD NALKAPUR
Kasturibaipet, Vijayawada – 520010		Wt:240as.RE6=17.0
		Aat:31.86(Cash)Tax:4.86
Dear Sir,	163	(Track on www.indiapost.oov.in)
•		<pre><dial 18002666868=""> <wear nasks.="" safe="" stay=""></wear></dial></pre>

Sub: Coromandel International Limited- Visakhapatnam-Submission of Hazardous Waste Annual Returns in Form-4 - FY2023-2024 - Regarding.

Ref: Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016

We are herewith furnishing annual returns (for the period April'23 to March'24) in Form-4 as per "Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016" and amendment thereof under E (P) Act, 1986.

Kindly acknowledge the receipt of same.

Thanking you,

Yours Truly,

For COROMANDEL INTERNATIONAL LIMITED

Gnanasundaram M Vice President & Head Manufacturing.

Encl. As above

CC to: i) The Environmental Engineer, Regional Office, APPCB, Visakhapatnam.

Registered Office : Coromandel House, 1-2-10 Sardar Patel Road, Secunderabad-500 003 Telangana, India

Tel:: 91-40-27842034 / 27847212 Fax: 91-40-27844117 E-mail : mail@coromandel murugappa.com

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : L24120AP1961PLC000892 GSTIN : 37AAACC7852K1ZC

Date: 06.05.2024

EHS/APPCB/2024-040

То

The Environmental Engineer, A.P. Pollution Control Board, D.No. 33-26-14 D/2, Near Sunrise Hospital, Pushpa Hotel Centre, Chalamalavari Street, Kasturibaipet, Vijayawada – 520010

Dear Sir,

Sub: Coromandel International Limited- Visakhapatnam–Submission of Hazardous Waste Annual Returns in Form-4 – FY2023-2024 - Regarding.

Ref: Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016

We are herewith furnishing annual returns (for the period April'23 to March'24) in Form-4 as per "Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016" and amendment thereof under E (P) Act, 1986.

Kindly acknowledge the receipt of same.

Thanking you,

Yours Truly,

For COROMANDEL INTERNATIONAL LIMITED

Gnanasundaram M Vice President & Head Manufacturing.

Encl. As above

CC to: i) The Environmental Engineer, Regional Office, APPCB, Visakhapatnam.

	······			FORM-4		
(To be	submitted to	State Pollution Co	ont	trol Board by 30th day of June of every yea April to March]	r for the prec	eding period
			Γ	Coromandel International Limited,		
1	Name and address of facility:			Pradesh, India	etnam-530011	l, Andhra
		No. and Data of	┢		1067	
2		I NO. and Date Of	:			
	ISSUE:		┢╌		027	
	Name of the a	authorised				
-	person and fu	III address with	١.		tnam-53001	L Andhra
2	telephone, fa	x number and e-	 			,
	ISee rules 6(5), 13(8), 16(6) and 20(2)] ICORM FOR FLING ANNUAL RETURNS Io be submitted to State Pollution Control Board by 30th day of June of every year for the preceding perl April to March] 1 Name and address of facility: :					
			-		1105040	
			Ŀ			
4		e), wherever	Ŀ			MI/Annum
	applicable		:	Phosphoric acid	370617	i
		Part A. To b	<u>e</u>	filled by hazardous waste generato	<u>rs</u>	
				Name of the Hazardous waste	Quantity	generated
				1) Acid residues (Tank bottom sludge)	25.000	мт
				2) Sulphur muck (Sulphur sludge)	940.000	MT
			:	3) Spent Catalyst		
			Į.	4) Used lubricating oil/drained oil	13.620	KL
1				5) Detoxified Containers	2438.000	No's
	0			6) LSHS Sludge	4.070	MT
				7) Scrubbing sludge	395.000	MT
				8) ETP sludge	490.000	MT
					0.000	мт
				10) Glass wool	0.000	MT
			Γ	11) Insulation Puf	0.000	MT
				Name of the Hazardous waste	Quantity dispatched	
		(i) an diamanal				
	1	1. · ·			6.770	мт
	Quantity				0	мт
2			:			
-	dispatched					
		(11) an un	1		14.020	KL 👘
		 (ii) to recycler or co-processors or pre-processor 		2) Detoxified Containers and container liners	2348	No's
	_	(iii) Others				

.

			FORM-4		
			rules 6(5), 13(8), 16(6) and 20(2)) FOR FILING ANNUAL RETURNS		
		-			
To be	submitted to State Pollution Co	Int	rol Board by 30th day of June of every year April to March]	for the pred	eding perio
			Name of the Hazardous waste	Quantit	ty utilised
			1) Acid residues (Tank bottom sludge)		мт
3	Quantity utilised in-house, if any -		2) Sulphur muck (Sulphur sludge)		MT
2		ľ	3) Scrubbing sludge		MT
			3) ETP sludge		MT
_			Name of the Hazardous waste		ly Storage
			1) Acid residues (Tank bottom sludge)		MT
			2) Sulphur muck (Sulphur sludge)		MT
	0		3) Spent Catalyst		MT
	1		4) Used lubricating oil/drained oil		KL.
	0	1	5) Detoxified Containers and container		
4	Quantity in storage at the end		liners	90	No's
4	of the year –	•	6) LSHS Sludge	0	мт
			7) Scrubbing sludge		MT
					MT
			8) ETP sludge		MT
			9) Off specified ,expired chemicals & lab		MT
			10) Glass wool		
		L	11) Insulation Puf		MT
	Part B. To be filled by	Tr	eatment, storage and disposal facilit	y operato	<u>rs</u>
1	Total quantity received -	;			
2	Quantity in stock at the	:		、 · —	
3	Quantity treated –	;		<u>ہ</u> ۔	
4	Quantity disposed in landfills		Not applicable		
4	as such and after treatment -	1			
	Quantity incinerated (if				
5	applicable) -	F.	12-		
~	Quantity processed other than				
6	specified above -	:			
7	Quantity in storage at the end				
	of the year -	·			
		dl	by recyclers or co-processors or othe	r users	
-	Quantity of waste received	Γ			
1	during the year –	:			
	(i) domestic sources	L			
2	Quantity in stock at the				
	beginning of the year -	ľ		_	
-	Quantity recycled or co-	I,	5	2	
3	processed or used –	ľ			
-	Quantity of products	Γ	-olice -		
4	dispatched (wherever	:	~ 36A		
	applicable) –	ľ	-10t		
		t	Not applicable		
5	Quantity of waste generated -	ŀ			
6	Quantity of waste disposed -	:			
7	Quantity re-exported (wherever applicable)-	:			
		┝			
8	Quantity in storage at the end of the year -	:	N N		
		1	······································	0	141
			101	beneed	W
	AC AC 3034		, W		
)ate :	06.05.2024		Signature of		
Incor	Visakhapatnam.		Operator of th	e disposal i	racility

.

Sustainability Measures

SUB: Environmental – Energy Conservation

Name of the Project: 1650 MTPD Sulphuric Acid plant III

Problems faced before implementation of initiative:

• Higher energy consumption for 45 MT/Hr. steam Generation from Steaming coal

Brief Description: 1650 MTPD Sulphuric Acid Plant III installed, generating 87 MT / Hr., high pressure waste steam at 69kgf/cm²g 485 °C. High pressure & temperature steam turbine results in lower Specific Steam Consumption of 4.0 MT / MWH. Old Condensing turbine was medium pressure 31kgf/cm²g 315°C with 5.8 MT/MW Specific Steam Consumption. Innovation enabled higher power generation

Technology: Monsanto Enviro Chem Systems USA, Engineering – Thyssenkrupp Industrial Solutions, India.

Cost - Rs 4300 millionAnnual Savings 72765000 kWhAnnual Savings Rs 466 millionPayback 111 monthCompleted Date Aug 2023

Challenges faced during the project:

- 1. Technical Know How for modern Energy Efficient Sulphuric Acid Plant
- 2. Availability of expertise for taking up modern technologies

Prevailing practice in the industry: Maximise deployment of Carbon free Energy.

Sustainability Measures

SUB: Environmental – Energy Conservation

Name of the Project: Installation of 11KV Automatic Power Factor controlling system

Problems faced before implementation of initiative:

- Grid power factor is at 0.970 lag and power factor to be maintained at unity for ideal conditions.
- Existing installed HT capacitor bank are not sufficient to meet the required capacitive load of the plant which is required to maintain unity power factor. This is due to the increase in plant loads subsequently.

Brief Description: Installation of Automatic Power Factor controlling panels comprising

- 1. 11 KV Limiting Reactors 2.12 MVAR 3 no's
- 2. 100 Kvar,440V,3Ph,50Hz, CLMD 83 Capacitor 30 no's
- 3. 11kV, 2500kVAr APFC with 6% inrush current 1 no.
- 4. 11kV, 2000kVAr APFC with 6% inrush current 1 no.

New generation technology considered as an alternative to conventional technology / method to limit the short circuit levels at existing substations

Cost - Rs 29.5 millionAnnual Savings 1703451 kWhAnnual Savings Rs 11 millionPayback 32 monthCompleted Date Jan 2024

Benefits: 1) After installing additional capacitor bank panels, power factor of around 0.995 lag at grid side is being achieved from Feb-24 which will reduce the losses and improve the power factor which will in turn give us power saving.

Challenges faced during the project:

1) Subsequent increase in Power capacity addition continuously.

Prevailing practice in the industry: Install capacitor banks whenever power load increases

Sustainability Measures

SUB: Environmental – Energy Conservation

Name of the Project: Replacement of age-old Air conditioner units with modern 3 Star Units

Problems faced before implementation of initiative:

• Higher Energy Consumption

Brief Description: 41 no's age-old Air conditioner units replaced by modern 3 Star Units.

Cost - Rs 2.384 millionAnnual Savings 48441 kWhAnnual Savings Rs 0.1 millionPayback 92 monthCompleted Date Jan 2024

Benefits:1) Improved Air Conditioning2) Lower Energy Consumption

Challenges faced during the project: None.

Prevailing practice in the industry: Maximise deployment of modern 3 Star AC Units.

Sustainability Measures – Kaizens – Zero cost Measures

SUB: Environmental – Energy Conservation

Name of the Project: Installation of AC controls, closure to respective AC Units

Problems faced before implementation of initiative:

- Higher Energy Consumption
- II AC unit running even when not required, as its temperature control is not close by

Brief Description: Installed AC temperature control sensors closure to respective AC Units,

Cost - Rs NIL millionAnnual Savings 21406 kWhAnnual Savings Rs 0.14 millionPayback 0 monthCompleted Date Nov 2023

Benefits:

1) Improved Air Conditioning

2) Lower Energy Consumption

Challenges faced during the project: None.

Prevailing practice in the industry: Installation of AC controls closure to place of use is a best practice.

SUB: Environmental – Sea Water Solution to Raw Water needs.

Name of the Project: 6000 M³/Day Sea Water Reverse Osmosis Desalination Plant

Problems faced before implementation of initiative:

- 1. Limited availability of Raw water for plant expansion
- 2. Regular Line leaks along 10 Kilometer long TSR Water Pipeline.

Brief Description: Sea Water undergoes rapid floatation pretreatment, in Direct Air Floatation system for removal of Algae. Filtration of sea water is carried out by reverse osmosis, which involves forcing water at high pressure through a membrane that retains up to 99% of impurities. Desalinated Water is utilised in process plants as raw water, part of the desalinated water also undergoes post-treatment in mixed bed Ion Exchanger where it is demineralized.

Cost of Project: Coromandel: INR 30 Cr, INR Veolia – 40 Cr, Total INR 70 Cr

Benefits:

- 1. Support Plant expansion.
- 2. High purity demineralised water

Challenges faced during the project:

• Higher energy consumption for desalination by Reverse Osmosis 4.8 kWh/M3 Water

Prevailing practice in the industry:

Enabling and securing access to water resources at a permeate salinity / Total dissolved solids level of 200 ppm, by exploiting an inexhaustible natural resource with high salinity of 37000 ppm.

SUB: Environmental – Nature Conservation- Greening within FenceName of the Project:Greening within Fence- Miyawaki Plantation

Problems faced before implementation of initiative:

1. Degraded land that has been used for construction and nonagricultural purposes.

Brief Description: Miyawaki Plantation involves plantation of trees, native to the area, with species that complement each other. As saplings receive sunlight from the top and grow upward, rather than sideways. It helps prevent growth of weeds, by avoiding sunlight reaching the soil.

S.no.	Area Of plantation	No. of plants	Year	Cost
1	Phase - 1	3000	2021-22	INR 7,61,607
2	Phase - II	10000	2021-22	INR 47,57,706
3	Phase - III	10000	2022-23	INR 50,00,000
4	Phase - IV	25000	2023-24	INR 1,24,00,000
5	Phase - V	3500	2023-24	INR 12,26,592

Greenery in more than 120 acres out of 320 acres industrial site (37.5%), adherence to better than regulatory norm.

Cost of the project: Rs. 136 Lakh Year 2023-24, No of Plants - 28500 no's

Benefits:

- 1. Creating Carbon sink in the area.
- 2. Control of fugitive emissions due to road traffic

Challenges faced during the project:

• Challenging sediment conditions, acidic soils necessitating laying of proper soil.

Prevailing practice in the industry:

Driving Compliance to APPCB order that 33% of industrial site around a factory is to be green.

SUB: Environmental – Abating Noise

Name of the Project: Modern Steam Vent Silencers

Problems faced before implementation of initiative:

1. High noise during venting of high-pressure steam.

Brief Description: Performance of Vent Silencers is achieved by a 2-stage noise reduction approach.

Stage 1 – The inlet diffuser is effective in attenuating frequencies of sound and distributing the flow evenly to the 2nd stage.

Stage 2 – Sound reduction comprises of absorptive elements positioned within the silencer case thus absorbing acoustic energy out of the steam prior to exiting the atmosphere.

Benefits:

1. Noise-less steam venting.

Challenges faced during the project:

• Design Known how of modern steam vent silencers.

Prevailing practice in the industry:

Enabling Compliance to APPCB order that noise levels in the industry should be within 75 db during daytime and 70 db. during nighttime.

SUB: Environmental – Dust Control during Solids Material Handling

Name of the Project: Steam, Air & Water Curtain for Dust Control during Solid Sulphur Handling

Problems faced before implementation of initiative:

- 1. Higher dust emissions during Solid Sulphur handling as the following existing measures have limited control of dust emissions.
 - a. Rubber & Canvas apron serves to contain dust, however, is limited due to access through several openings in the apron.
 - b. Bag filter creates a negative atmosphere and removes airborne dust, is limited due to dilution air entry through several openings and huge power consumption.

Brief Description: Low pressure smothering steam, Fine mist of Water and Air are released to create positive pressure around the emission points and act as a curtain, at various dust emission points during Solids Sulphur handling in Sulphuric Acid Plant – III.

Benefits:

- 1. Environment Compliance Control of dust under positive pressure.
- 2. Better work place ambience

Challenges faced during the project:

- Fine mist of water and steam smothering increases acidity in solid sulphur
- Excessive load on Bag filters.

Prevailing practice in the industry:

Ensuring Compliance to APPCB order on fugitive Dust emissions < 50 mg/NM3

SUB: Environmental – Effluent Control Better than regulatory norms

Name of the Project: Fresh Water Surface Condenser for Turbo Generator III

Problems faced before implementation of initiative:

- 1. Sea Water has worst Corrosion characteristics, hence special Cu: Ni 70:30 tubes used
- 2. Higher tube side Scaling due to sea water contaminants, requiring automatic cleaning using circulating rubber sponge balls.
- 3. Use of sodium hypochlorite, or chlorine, to ensure there is no marine growth on the pipes or the tubes. However, circulating water returning to the sea is affected.

Brief Description: Fresh Water Surface Condenser for Turbo Generator III, which rejects the heat from condensing steam in surface condenser to air in a cooling tower using fresh water as circulating heat transfer medium.

Benefits:

- 1. Better Environment
 - a. Capacity of air environment to absorb heat is higher than heat rejection to water.
 - b. Heat of water needs to be released to air through water evaporation, hence direct discharge of heat to air is better option.
 - c. Marine environment is least effected.

Challenges faced during the project:

- Higher liberation of heat in factory premises
- Large quantity of fresh water consumed.

Prevailing practice in the industry:

Fresh Water Surface Condenser is a better option for condensing type-high pressure steam turbine.

SUB: Environmental – Effluent Control Better than regulatory norms

Name of the Project: Zero Liquid Discharge Facility

Problems faced before implementation of initiative:

- 1. Loss of containment
- 2. Poor Control of final effluent quality

Brief Description: Installation of Zero Liquid Discharge Systems

Technology used: The major sources of effluent are overflows and spillage of process drains of Sulphuric acid plant, cooling tower blow down and leachate water from Gypsum Pond. Installed water recovery pits along with agitators for water conservation by recovery and reuse.

Benefits:

- 1. Compliance to APPCB order.
- 2. Control on liquid effluents.

Challenges faced during the project:

Design and Installation of Gradient Floor for recovery, separate process and storm water drains and recovery pits.

Prevailing practice in the industry: Zero liquid discharge by installing process and storm water drains and recovery pits is well established. All new plants to be designed for ZLD

SUB: Environmental – Effluent Control Better than regulatory norms

Name of the Project: Cooling Tower Water Conductivity meter for blowdown control

Problems faced before implementation of initiative:

- 1. Lack of online control for blowdown
- 2. Excessive Water consumption

Brief Description: Installation of Conductivity meter on cooling tower water system, for controlling Blowdown

Benefits:

1. Control on liquid effluents.

Challenges faced during the project:

Letting management realize on the need to have online Conductivity meter for cooling tower blowdown control

Prevailing practice in the industry: Boiler Blowdown control by installing conductivity meter is good water conservation practice.

SUB: Environmental – Dust Control Better than regulatory norms

Name of the Project: Dust control while preparing lime solution

Problems faced before implementation of initiative:

1. Dust generation during mixing of lime in Lime Slurry Preparation Tank

Brief Description: Installation of Air Operated Diaphragm Pump

Benefits:

1. Control on Dust generation.

Challenges faced during the project: Know how on operation of Air Operated Diaphragm Pump and its applications.

Prevailing practice in the industry: Installation of Air Operated Diaphragm Pump is a best practice in Lime Addition to Lime Slurry Preparation Tank/

Lime Dust generation while dumping into Lime slurry Preparation Tank Air Operated Diaphragm Pump Lime Power flow through hose without dust generation

SUB: Environmental – Emission & Effluent Control measures

Name of the Project: Installation of Continuous Emission Monitoring system

Compliance to CPCB Guidelines: Use of CEMS to continuously collect, record & report emission data of SO2 for monitoring compliance to Sulphuric Acid Plant emission standards.

Problems faced before implementation of initiative:

1. Heights of stacks, Corrosive environment & Stack structure conditions restrict regular maintenance work at height.

Brief Description: Installed Online stack emissions monitoring system The standard CEM system consists of a sample probe, filter, sample line (umbilical), gas conditioning system, calibration gas system, and a series of gas analyzers which reflect the parameters being monitored. A Data Acquisition and Handling System (DAHS) receives the signal output from each analyzer, which is then simultaneously transmitted live to CPCB / APPCB Servers in order to collect and record emissions data

Technology used:

• SO2 measurement – Non-Dispersive Ultraviolet Absorption spectroscopy

Benefits: **Self-regulation of Industry** Challenges faced during the project:

 Moisture in stack – availability of suitable material of construction

Prevailing practice in the industry: Compliance to APPCB order

SUB: Environmental – Emission & Effluent Control measures

Name of the Project: Quality Assurance Laboratory Fumes Scrubber

Problems faced before implementation of initiative:

• Quality Assurance Laboratory Fumes let to atmosphere.

Brief Description: Fumes Scrubber

Technology used: The scrubber system consists of a void tower crossflow Gas Scrubber with a Gas Scrubber Fan drawing gases from the various emission points of the Quality Assurance Laboratory and discharging them to the Stack.

The gases enter the gas scrubber through the bottom. They are washed with an aqueous solution. This solution circulates through the pumps. The make-up is done by process water. The bleed of the scrubber is pumped to ETP for treatment & reuse.

Benefits: Scrubbing of Gases for Fumes control

Challenges faced during the project:

• Water balance & effluent control of scrub liquor

Prevailing practice in the industry: Gas scrubbing ensures sustainable emission control.

SUB: Environmental – Soil Rejuvenation

Name of the Project: Garden Compost

Problems faced before implementation of initiative:

• Lower Soil Nutrients in around Housing Colony.

Brief Description: Garden Compost

Technology used: Small Pits were dug in around each house in housing colony. is as simple as collecting yard waste or the organic materials in your trash (such as fruit and vegetable peels) to fill a pit. Over the course of a year or so, the material will decompose.

Benefits: The decomposed organic material is then added to soil to provide nutrients to sustain plant growth. Compost also helps to improve soil structure and supports soil microbes that are integral to plant health.

Challenges faced during the project: Some people believe learning how to compost is too complicated, it smells bad, and it's messy. This may be true if you compost the wrong way,

Prevailing practice in the industry: Compost is a natural alternative for Garden rejuvenation.

SUB: Environmental – Monitoring

Name of the Project: Ammonia Leak Detectors & Siren

Problems faced before implementation of initiative:

• Non availability of information on Gas leak emissions to employees & Public

Brief Description: Siren and Ammonia Leak detectors installed at Mulagada village and at crossroad at Gate No 9, to alert Public on Ammonia Leak

Benefits: On Site Emergency Control.

Challenges faced during the project: Public unrest on Gas leaks in neighborhood villages.

Prevailing practice in the industry: Installation of leak detectors & Siren is a best practice.

SUB: Environmental – Water Conservation

Name of the Project: Sewage Treated Water for Gardening

Problems faced before implementation of initiative:

- Fresh Water availability limited for Gardening.
- Utilisation of Sewage Treated Water in production process limited.

Brief Description: Installed Sewage Treated Water storage Tank, irrigation water lines for plantation at Harita Vanam

Benefits:

- 1. Water Conservation by avoiding freshwater use.
- 2. Ecological conservation by enabling zero effluent discharge.
- 3. Proper operation of Sewage Treatment Plant is ensured, else presence of pathogenic bacteria will harm Green plantation as well as contaminate groundwater.

Challenges faced during the project: A large percentage of domestic & industrial water users are afraid to use this technology to supply water (direct reuse) because of the potential presence of pathogenic organisms. However, most people are willing to accept reused wastewater for lawn irrigation and for cooling purposes in industrial processes.

Prevailing practice in the industry: Suitability of this technology, especially where there is a water deficit for several months of the year, implementation of wastewater recycling or reuse by industries can reduce demands for water of potable quality, and also reduce impacts on the environment.

SUB: Environmental – Water Conservation

Name of the Project: Rainwater Harvesting

Problems faced before implementation of initiative:

• Fresh Water availability limited.

Brief Description: Installed Rainwater Harvesting System for Control Rooms

Benefits:

1. Water Conservation by avoiding freshwater use.

Challenges faced during the project:

- 1. Limited storage of rainwater.
- Lot of dust accumulated in collection area, is washed away into rainwater collection system during rain, clogging drains as well as acidic & huge sediment water to plantation can harm plantation.

Prevailing practice in the industry: Rainwater harvesting is the viable technology used to conserve rainwater by collecting, storing, conveying, and purifying of rainwater that runs off from rooftops, parks, roads, open grounds, etc. for later use.

SUB: Environmental – Water Conservation

Name of the Project: Startup Tail Gas Scrubber

Problems faced before implementation of initiative:

• High SO2 emissions through stack during cold startup and process upsets.

Brief Description: Installed Start -up Tail Gas Scrubber where upward process gas flows is scrubbed by countercurrent Sodium Hydroxide solution in a packed Absorber, where SO2 reacts with NaOH to form sulphite and sulphate salts (Na2SO3, NaHSO3, Na2SO4).

Scrubber operates with close pH control on absorbing solution.

Benefits:

1. SO2 emission control.

Challenges faced during the project:

- 1. Density control Higher density of absorbing solution causes clogging of absorber and leads to SPM carryover.
- 2. Low pH of Absorbing solution causes loss of Absorption.
- 3. Requires automatic process control.

Prevailing practice in the industry: Startup Tail Gas Scrubber for Sulphuric Acid Plant is as part of compliance to APPCB / CPCB guidelines.

Annexure-5

Environmental Control Measures Coromandel International Limited Visakhapatnam

s.no	EHS (2023-24)	Rs. Lakhs
1	Super heater replacement along with inlet &	650
	outlet ducts	
2	Procurement of Heat Exchanger for	150
	evaporators with Carbon fiber reinforced	
	graphite tubes - 1 No	
3	Dilution cooler - replacement	150
4	Road Sweeping Machine	110
5	Sulphuric acid piping in Complex-ABC Train	80
	replacement with Alloy 20	
6	Lightening protection phase - 3	80
7	B-Tr Dryer separator vessel &	70
	C-Tr Pre-scrubber vessel renewal	
8	Critical flow meters	60
9	LECO sulphur analyzer	55
10	Miyawaki plantation Phase - V	11
11	SAP 1&2 cooling tower blowdown water 25	
	recovery pumping system	
12	Desalination plant of 6 MLD Capacity	3000
	Total	4441

s.no	EHS (2022-23)	Rs. Lakhs
1	Green Building	20
2	Solar Street lighting	7.1
3	LED lighting	5
4	Replacement of age-old Air conditioner	15
5	Battery Operated Electric Automotive	10
6	Haritha Vanam Red soil	16
7	Miyawaki Phase-III & IV	174
8	Evaporator - II Steam Condensate recovery	33
9	2 km plant bypass road	1370
10	Anion Rinse Water Recovery system	61
11	CAAQMS & OCEMS (New & O&M)	100
12	STP Capacity Enhancement	50
13	ETP sludge storage shed	150
14	Digital Display Board	3.0
15	NOx Analyzer	14

Total 2028.1

s.no	EHS (2021-22)	Rs. Lakhs
1	Water recovery by rainwater harvesting	100
2	Gypsum Pond Leachate Recovery System	670
3	Installation of impervious HDPE Geo permeable	
	membrane liner	650
4	Renovation of Online Continuous Emission	
	Monitoring system	180
5	Renovation of Continuous Ambient Air Quality	
	Monitoring system	70
6	Harithavanam Grass Cover	24
7	Miyawaki PH-II	45.6
8	Prill Tower area Grass	12
9	Colony Plantation	2
10	Green Visakha	271
11	Wharf plantation	2
	Total	2026.6

s.no	EHS (2020-21)	Rs. Lakhs
1	Green Visakha Plantation	266
2	CAAQMS at Garage location	49
3	EPR Charges for Plastic Waste Management	80
	Total	395

s.no	EHS (2019-20)	Rs. Lakhs
1	Green Visakha Plantation	140
2	HDPE liner for Gypsum Pond	1300
	Total	1440

s.no	EHS (2018-19)	Rs. Lakhs
1	Green Visakha Plantation	100.0
2	Gypsum Neutralization Unit	70.0
3	Drains Improvement (PA Plant)	25.0
4	Energy Efficient lighting at plants	20.0
5	Grass plantation at gypsum Pond on trials	5.0
	Total	220.0

s.no	EHS (2017-18)	Rs. Lakhs
1	Oil Skimmer	25.0
2	Green Visakha Plantation	50.0
3	PAP & remining stacks analysers	43.0
4	Gypsum Neutralization Unit	1000.0
	Process Drains Improvement (PA Plant)	130.0
	Total	1248.0

s.no	EHS (2016-17)	Rs. Lakhs
1	Oil spill recovery equipment	46.0
2	Sewage Treatment Plant	51.0
3	A, B Train – Online monitoring & Closed Circuit Camera	63.0
	Total	160.0

s.no	EHS (2015-16)	Rs.Lakhs
1	Ambient Air Quality – 3 rd stations (replacement to Cyclone damaged)	50.0
2	Online Monitoring equipment (Complex plant C train)	18.0
3	Plantation (inside + outside)	54.0
4	Improvements in Effluent Handling	55.0
	Total	177.0

s.no	EHS (2014-15)	Status	Rs.Lakhs
1	Replacement of damaged insulation due to HUd-Hud Cyclone	2014-15	230
2	Mechanical Plate exchanger replacement at SAP-I	2014-15	80
3	Pre-scrubber tank replacement	2014-15	18
4	REPL. OF BME CANDLES FOR SAP-1 AND SAP-2	2014-15	40
5	Replacement of Dedusting system ay Ctrain Cyclone ducts	2014-15	32
	Total,Rs/-		400

s.no	EHS (2013-14)	Status	Rs.Lakhs
1	Green Belt Development by TERI on Gypsum pond	2013-14	250

2	REPL. OF BME CANDLES FOR SAP-1 AND SAP-2	April'13	62
	Total,Rs/-	312	

s.no	EHS (2012-13)	Status	Rs.Lakhs
1	3 rd online AAQM station	March'13	60
2	Green Visakha -15000 saplings	March'13	58
3	A,B TRAIN COOLER CYCLONE DUCTING,RENEWAL	Nov'12	22
	Total,Rs/-	ł	140

s.no	EHS (2011-12)	Status	Rs.Lakhs
1	Portable workplace monitoring system	May'12	10
2.	Green Visakha at Air port	March'13	50
	Total,Rs/-		60

	Capex -EHS(2010-11)	Status	Rs. Lacs
1	Effluent / Storm Water drains		30.00
	management	Feb'2011	
2	Ambient Air Quality monitoring Station	March'2011	60.00
3	Effluent Treatment Plant(ETP)	August'2011	1600.00
4	HDPE lining -Gypsum siding area (About 5 acres)	July'2010	150.00
5	Telescopic chutes for Rock Go down	Feb'2011	45.00
6	Structural Stability	2010-11	120.00
7	Replacement of BME candles for FAT & DT	March'2011	40.00
8	AAQM Station at Mulagada village	Nov'2010	22.00
	Total(Lacs)		2067.00

2009-10 (Rupees lakhs)			lakhs)
SI. no.	Measure	Year installed	Cost Rs. Lakhs
1.	HDPE lining Gypsum area – 5 acres	2009	100.00
2.	Water Conservation	2009	50.00
3.	Improvement to storm water drain system	2009	30.00
4.	Greenbelt Development	2009	17.00
5.	Start up Alkali Scrubber at 1400 MTPD sulfuric acid plant to reduce SO2 emissions	2009	135.00
6.	Fire water system for AAST	2009	30.00
7.	Ambient air monitoring station(AAQM)	2010	75.0
8.	Study of scrubbing system at complex plant	2009	10.00
9.	Filling of Black cotton soil at 7 th gate	2010	15.00
		TOTAL(Lacs)	462.00

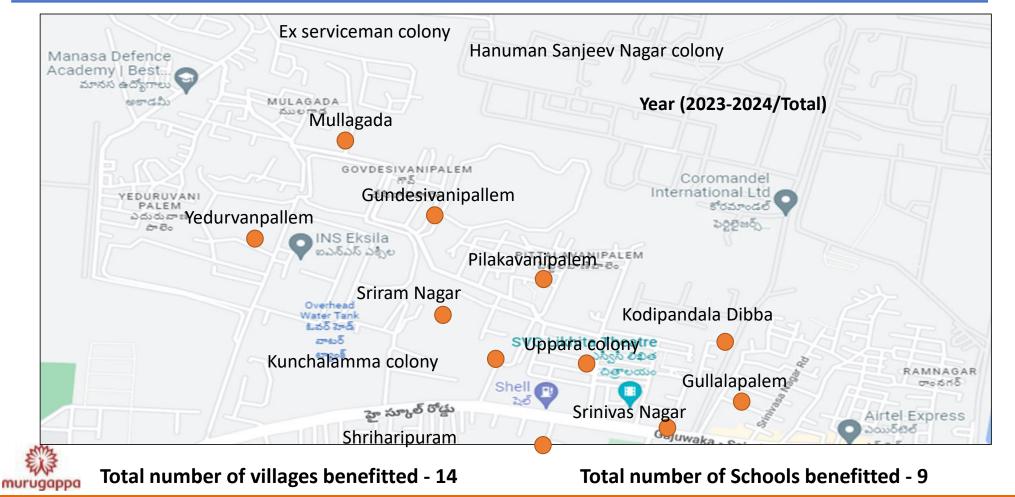
SI.			Cost			
no.	Measure	Year	Rs.			
		installed	Lakhs			
10.	Installed Dry gypsum Disposal system at	April'2009	2900			
	Phosphoric acid plant					
11.	BME candles for Final absorption tower of SAP-II	2008 10				
12.	Procured road sweeping machine to reduce 2008 17 dust emission during movement of vehicles inside the plant roads					
13.	Installation of Alkali start-up scrubber for 300 MTPD sulfuric acid plant to reduce SO ₂ emission during start-up	2008	99			
14.	Installation of new bag-filter in place of existing bag-filter at wharf new silo for reduction of fugitive dust emissions	2008	14			
15.	Replacement of bag-filter at old ball mill of rock-grinding unit	2007 18				
16.	Installation of Air Pre-heater in Trains 'B' & 'C' of complex plant	2006 320				
17.	Installation of Air Pre-heater in Train-A of complex plant	2006 165				
18.	Installation of Telescopic chute (2 Nos.) at Wharf New Silo	2006	13			
19.	Installation of pipe conveyor at wharf in place of cross conveyor.	n 2005 175				
20.	Hazardous waste handling and disposal system	2004	5			
21.	Installation of telescopic chute at rock phosphate storage godown.	2004	30			
22.	Replacement of fume gas scrubber at phosphoric acid plant.	2004	150			
23.	Installation of de-dusting system at rock phosphate unloading area.	2004	10			
24.	Installation of new Screw Unloader System in place of gantry grab bucket system and construction of silo and overhead pipe conveyor at wharf	2003	2000			
25.	Installation of new bag filter for storage silo at wharf area in place of existing one.	2003	20			
26.	New SO ₂ on-line analyser was installed at sulphuric acid plant.	2002	8			

SI. no.	Measure	Year installed	Cost Rs. Lakhs
27.	Ground rock transfer system from rock grinding station to phosphoric acid plant modified from pneumatic system to pipe conveying system.	2002	200
28.	Bag-filter was installed on inclined conveyor at wharf area.	2002	2
29.	Additional bag-filter at rock grinding unit	2001	5
30.	New scrubbing system for train 'B'	2001	550
31.	New scrubbing system for train 'A'	2000	550
32.	Telescopic chutes (2 nos.)	12	
33.	Pollution control equipment for new complex Train 'C'	2000	833
	TOTAL Rs./ lakhs		8106

BEFORE	THE YEAR 2000					
34.	Telescopic chute, emulsifier nozzles & bag filter at wharf area	1999	10			
35.	Renewal of bag filter at rock grinding	1998	15			
36.	Molten sulfur handling facility	1997	1050			
37.	Reinstallation of high capacity effluent pumps	1996	50			
38.	Renewal of bag filter at phosphoric acid plant	acid 1995 5				
39.	Green-belt development	_	20			
40.	Revamping of sulfuric acid plant converter & use of high active ring shaped catalyst.	1994	450			
41.	Modification of recirculation pumps in effluent treatment plant	1994	35			
42.	Fluorine recovery unit	1994	320			
43.	LPG/Naphtha fumes monitor for leak detection	1993	4			
44.	Installation of continuous pH meter for DT acid cooler exit water	1993	2			
45.	Replacement of cold heat exchanger	1992	80			
46.	Fluoride analyser for effluent analysis	1992	4			
47.	Installation of continuous SO ₂ , analyser for stack in sulfuric acid plant	1992	15			
48.	Installation of dust control system in bagging plant	1992 12				
49.	Installation dust control system at wharf silo	1992	13			
50.	Monitoring equipment viz. High volume samplers, ammonia sensors.	1990 & 91	5			
51.	Effluent recycle scheme in complex plant	1989	12			
52.	Construction of effluent treatment plant	1989	250			
53.	Installation of bag filters in rock grinding plant	1989	12			
54.	Construction of new F.A.T. in sulfuric acid plant	1989 20				
55.	Extension of fume scrubber stack in phosphoric acid plant	1988	6			
56.	Installation of fumes scrubber in phosphoric acid plant	1987	30			
57.	Installation of mist eliminator candles in 1987 10 sulfuric acid plant					
58.	Rinse water recovery scheme in utilities plant	1984	3			

BEFORE	BEFORE THE YEAR 2000						
59.	Replacement of conventional catalyst to1980more active type (Ring)						
60.	Conversion of sulfuric acid process to DCDA 1975 250 technology						
61.	High efficiency Venturi scrubbers in complex plant	1967	27				
62.	Dust cyclones in complex plant 1967						
63.	Installation of dust cyclones in phosphoric 1967 4 acid plant						
	TOTAL	Rs/ lakhs	2796				
	•						

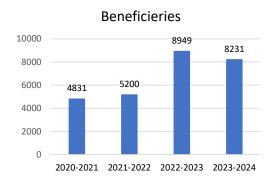
Note:	Total investment from 1967 to 2012-13	= :	13631 lakhs
	Capital investment for 2013-14	=	312 lakhs
	Investments in 2014-15	=	400 lakhs
	In 2015-16	=	177 lakhs
	In 2016-17	=	160 lakhs
	In 2017-18	=	1248 lakhs
	In 2018-19	=	220 lakhs
	In 2019-20	=	1440 lakhs
	In 2020-21	=	395 lakhs
	In 2021-22	=	2026 lakhs


CSR Annual report 2023-2024

Vizag

Mapping villages-Total bEN -217134

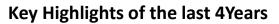
Approved Vs Spent-23-24

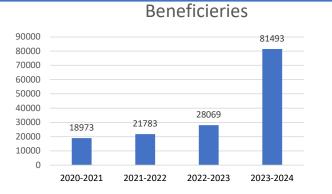

	S.No	Domain	Spent (Lacs)
	1	Community Development	133.00
Spent Matrix	2	Health	73.79
	3	Education	85.67
		Total	292.46

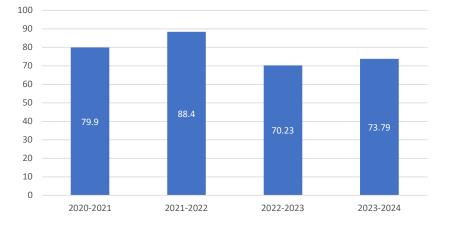
CSR Initiative-Education

Key Highlights of the Last 4 Year

- > Chemistry its FUNdametals
- Renovated Social welfare Girls hostels
- Coromandel Girlchild scholarship
- Champs Life skill development to children
- Karadi path Magic English
- School infra

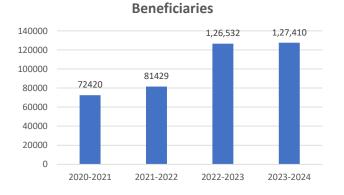

80 **Education:**Budget Spent-Education for last 4 yrs 70 60 50 40 85.06 30 20 23.64 10 5.18 0 2020-2021 2021-2022 2022-2023 2023-2024 murugappa

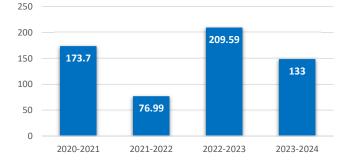



CSR Initiative-Health

- New Coromandel Medical centre
- ➢ IBCC
- Eye screening camp
- Women & Children Medical camp
- Anti-Larval & Fogging
- Health & Nutrition program

Health




CSR Initiative-Community development

Key Highlights of the Year

- Community infra
- Women livelihood –Ekka
- Community Bore Motor wells
- Community Open Gyms-
- Inter village sports for youth
- Women sports
- RO water plant
- World environment day
- Govt ITI Computer Lab
- Renovated Fire station

Annual Budget Expenditure Community Development

Coromandel Prayog Utsav

- Coromandel Proyog Utsav (Mega Science Fair) on 29th Feb 2024.
- Mr. Husaian, Revenue Divisional Officer, Prof.
 Murthy garu, HoD of Journalism & Mass
 Communication & Dean Examinations of Andhra
 University, Mr. Rama Rao, Dy. Director of Social
 Welfare were the Chief Guests of the program.
- Total No of schools attended :29
- No of projects :150
- Total children attended :450

Inauguration of Coromandel Science Laboratory @ Mindi High School

- Coromandel Science Laboratory was Inaugurated by Mr.
 Gudivada Amaranth, IT & Industrial Minister, Mr. Tippala
 Nagireddy, MLA of Gajuwaka at Govt High school Mindi on
 26th June-2023.
- No. of Beneficiaries 740

Coromandel Science Laboratory @ Malkapuram GVMC High School inaugurated by Mr. Arun Leslee George, President & CHRO of Coromandel International Limited 30th Aug'23 No. of Beneficiaries - 1190

Coromandel Girl Child Scholarship Program

- Organized Coromandel Girl child Students success meet-2023.
- Coromandel Ladies Association recognized and encouraged 23 children who secured 510 marks and also state level rankers from Malkapuram GVMC High school
- Beneficiaries 70 scholarship children
- Our scholarship- SSC children attended the examination out of 23 no's got 500 above marks

Teacher training workshop

- Organized 2 days Teachers training workshop on 12th & 13th
 Oct 2023 at Our CRC
- To ensure teachers in these schools have access to tested teaching learning materials in both print and multimedia formats to empower the students improve their English Language proficiency
- To empower the Teachers, use audio and video tools in govt schools through the implementation of the Karadi path Program.
- Participated Mandel educational officer, cluster recourse
 person ,Govt school teachers and our HR dept

New Coromandel Medical Centre Inauguration

- New Coromandel Medical Centre Inaugurated by Shri Nageswarao garu, DMHO along with 58th ward Corporator, Mr.Gnanasundaram-VP & Unit Head, Mr.Jayagopal- CSR Head, Mr.Srinivasrao, DGM-HR
- DMHO appreciated coromandel management for their support towards health care services to the community.
 Initiated on 15th Nov 2023

Women & children Medical camp

- We Organized a dedicated Medical camp for Community
 Women & children (Up to 13years of age) at Gullalapalem &
 Mulagada villages and offered various services like
 ECG,RBS,LFT,HBSAg,CBC,ESR,THYROIS PROFILE,BLOOD
 GROUP,URIC ACID,CERVICAL CANCER SCREENING etc.
 - Provided Six services Gynaecology/Paediatric/Orthopaedic/Nutrition /Dentist/General physician.

•

 Total conducted 2 villages on 3rd & 10th Dec 2023 total 541 beneficiaries benefitted they're of the programme and expressed their gratitude to the coromandel management for Organized this camp at their villages. Peoples participated from Gullalapalem & Mulagada.

World breast feeding week celebrations

 Coromandel International limited, is closely working around 5 Anghanwades

(Mulagada/Pilakavanipalem/Gullalapalem/Sriharipura m/Yeduruvanipalem) nearby plant surrounding areas. We have conducted World Breastfeeding Week celebrations supported with Integrated Child Development Services (ICDS)

 Total pregnant & Lactation women covered 180 Nos and we provided Nutrition kits and participated Local corporator/ICDS Project director/Anganwadi teachers

Integrated Behavior Change Communication (IBCC)

- We have organised IBCC Project-Integrated Behavior Change communication to community.
- Health awareness/Hypertension/hand
 wash/Adolescent/Nutrition to community
 members.

School Medical Camps

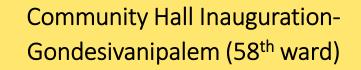
- Dental screening, Eye screening and Anemic screening camp 4
 Govt primary and 4 High schools and total covered 9 Govt.
 Schools.
- As per requirement provided Dental kits & Anemic kits to school children.
- 3370 children in 8 Govt. Schools.

Eye screening camp @ Community Coromandel Internationa Corome

We organized Eye screening camp Yeduruvanipalem and Pilakavanipalem villages and no of Benefitted 490

Anti Larval & Fogging

- Anti-Larval & Fogging Sprayed to Project villages.
- To avoid & control the seasonal diseases like Dengue, Malaria- Anti-Larval & Fogging Spray to 11 major community villages.


Diabetic awareness Run

- Every year Coromandel Employe We Organized Diabetic Awareness Programme.
- Participated 98 employees provided participate certificates

- 58th ward Community hall Inaugurated by Anand Kumar YSRCP in charge and MSME Chairman and 58th ward Corporator Mrs.Lavanya and community leaders on 14th Aug 2023
- 110 families benefitted & 600 peoples covered.

Community Hall Inauguration-Hanuman Sanjivani colony (60th ward)

- Community hall Inaugurated by Mr. A Anandkumar MSME Chairman and west zone YSRCP in charge,60th ward corporator Mr.Suresh and community leaders on 14th Aug 2023
- 320 families benefitted 1600 peoples covered.
- 2 community halls works under process

10 Community Borewells installed

- Established 10 community bore wells in 10 locations
- Borewells inaugurated by Mr.Adari Anand kumar YSRCP In charge west zone & MSME Chairperson and 58th ward Corporator.
- 2023-2024 we initiated 4 Motor bore wells four villages

4 Community Open Gyms Established

- Established 4 Community Open Gyms
- Yeduruvanipalem
- Pilakavanipalem
- Gullalapalem

murugappa

• Ex servicemen colony

Coromandel Inter-village Cricket Tournament 2023-24

- Coromandel encouraged youth and conducted Sports and games every year to create a healthy atmosphere among the community
- Organized Inter-village cricket tournament at Coromandel Cricket Ground
- 18 Teams participated in this event.

murugappa

Winners Yeduruvanipalem and Runners
 Pilakavanipalem

World Environment day

- World Environment day celebrated and distributed the cloth bags to the Public and 30 Tree plantation at social welfare Girls hostels.
- Local Corporator, Police dept and local community members participated.

Coromandel Ladies Association Initiatives

- World food day
- National Cancer day
- Printer, game kits, stationary support to Social welfare Girl hostel children
- Wheelchairs support

murugappa

- Blanket supported to poor people
- Women's day celebration

Skill Development for women

- We established 4 Skill development program.
 Each program batch consists of 30 women
- Budget Rs. 5Lakhs x 4 = Rs.20.0 Lakhs

1.Maggam work

2.Jute bag

3.Handmade jewellery

4.Beautician

murugappa

Women's day celebrations

- 2023- Women's day celebrations, involving Community women members.
- 273 community women participated

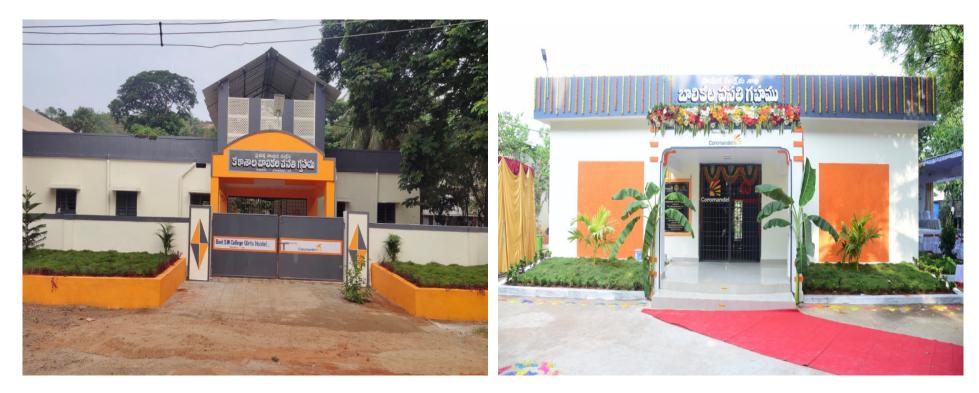
murugappa

Beat Plastic Pollution

Distribution of cloth bags in presence of District Collector (Dr. A.MALLIKHARJUNA) and Mr. Y.V. Subba Reddy (Chairman – TTD)

Mega Beach cleaning

- Every year Coromandel Employee
 volunteers participated in Mega beach
 cleaning event as a part of Social cause.
- Total 40 Employee voluntarily engaged in the event.
- District Collector, GVMC Commissioner and IT Minister Mr. Amaranath


Road Safety awareness to Govt schools

- Every year we ensure Road safety awareness to 8 Govt schools. Conducted the quiz competition provided Prizes
- Risk and property Reduced our surround plant area Govt schools

Renovation of Social welfare Girls Hostels

Dayal Nagar Girls Hostel

Nadupuru Girls Hostel

Social welfare Girls Hostels Inaugurated by District Collector

Social welfare Girl's hostel report Hand overed to District collector

Appreciation letter From District Collector

Coromandel ladies Association

- Coromandel Ladies Association visited and interacted with Social welfare Girl Children at Nadupuru.
- Ladies Association Provided Stationery and Games kits to school children.
- Ladies Association conducted Health Hygiene awareness session to children.
- 30 tree Plantation carried out by the team.

Coromandel Ladies Association visited to Social welfare Girls PG hostel Dayal Nagar

- Coromandel Ladies Association visited and interacted with Social welfare Girl PG students at Nadupuru.
- Ladies Association supported scanning printer to Hostel students.
- Awareness created on Personal Hygiene by Dr.Madhulatha.
- 30 tree Plantation carried out by the team.

PRSI National CSR Award

- Received First Prize in best CSR
 Programme for promoting Science
 & Technology.
- Award presented by Mr. Rajiv Ranjan Misra, Dhruba Jyoti Patil.

Malkapuram Police station Renovation

 Renovated Malkapuram Police station and it was inaugurated by Mr.Anand Reddy, DCP Zone 2, Mr. Gnanasundaram-Vice President & Mr. GSV Raja, AVP HR of Coromandel along with Mr. Demudu Babu garu, Station Officer of Malkapuram Police Station

150 Safety Barricades to Police & surrounding communities

Fire Station Renovation jobs @ Pedagantyada

Inaugurated by Mr.Niranjanreddy, Regional Fire officer, Mr. M.
Gnanasundaram, Vice President of
Coromandel along with Mr. Renukaiah,
District Fire officer

Thank You

Annexure -5

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : L24120AP1961PLC000892 GSTIN : 37AAACC7852K1ZC

Date: 01.07.2024

EHS/APPCB/2024-072

To,

The Environmental Engineer, A.P Pollution Control Board, D.NO.33-26-14 D/2, Near sunrise Hospital, Pushpa Hotel Centre, Chalamalavari Street, Kasturibaipet, Vijayawada-520010

Sub: Submission of CFE Half Yearly Compliance Reports - Sulfuric acid plant - 03

Ref: CFE No: 65/APPCB/CFE/RO-VSP/HO/2012 dt 08.02.2020

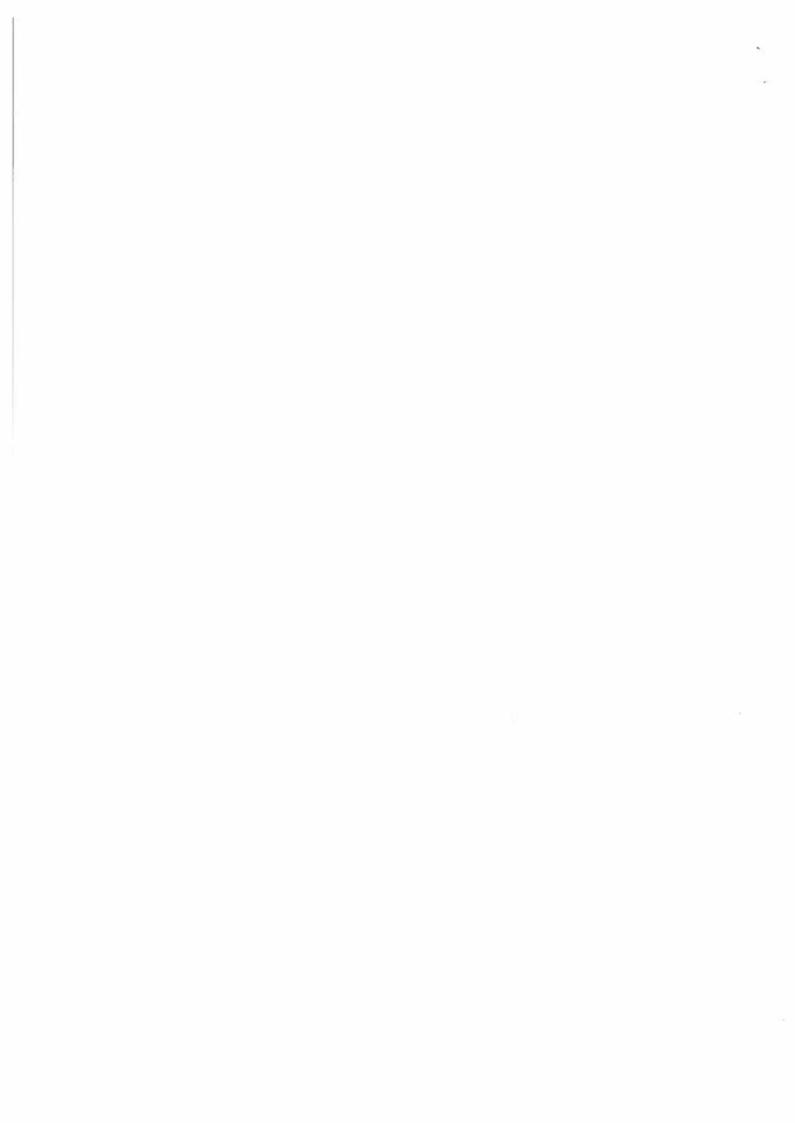
Dear sir,

This has with reference to the above subject we are herewith submitting the CFE Half yearly Compliance report for the period of Dec-2023 to May-2024.

This is for information please.

Thanking you,

Yours faithfully


For Coromandel International Limited

Gnanasundaram M Vice President & Head Mfg.

xG/DNR

Enc: CC to 1. Regional Office, APPCB, Visakhapatnam 2. Zonal Office, APPCB, Visakhapatnam

Consent for Establishment order No: 65 /APPCB/CFE/RO-VSP/HO/2012 dt 08.02.2020

From the Period of Dec-2023 to May-2024

from (P&C of P) The mete	APPCB, as of P) Act, Act, 1981, applicant sl	shall obtain Conse required Under S 1974 and under se before commenc	ec.25/26 o ec. 21/22 c		Noted and being complied.
The a mete	applicant sl		ement of t		
An a	ition Contro Iternative e	nall properly main ent Treatment Pla ol equipment to re electric power sou	itain separa ant (ETP) a ecord ener irce sufficie	Complied	
drair	ns. No efflu		Complied. Maintained dedicated stormwater drains.		
perm as fo	nitted wate llowing after Purpose	r consumption is er expansion of Su Consented quantity as per CFE (Exp) dt: 26.04.2019 (KLD)			Complied
6	plant		1600	10,350*	
7	Sea water.	000,96		84,600 84,950	
			0,350 KLD as mer	ntioned in the	
		-			Complied
SL No	Effluents	Consented quantity as per Pr CFE (Exp) dated 26.04.2019 (KLD)	oposed Quantity (Expansion)	Quantity after expansion (KLD)	
		1800		1800	
	stow down	81,600		81,600	
3					
	all po The i drain wate The s perm as fo s.re 5 6 7 7 The r the f	all pollution cor The industry shi drains. No efflue water drains. The source of w permitted wate as following after Slino Purpose 1 Process & Washer 2 Industrial Cooling Makeup) - trean water 4 Boller Feed 5 Domesic & other 6 Customized terbia plant 7 Industrial Cooling Sea water. 6 Corder dt: 10 The maximum v the following after 1 Process & 1	all pollution control systems shall The industry shall properly maint drains. No effluents shall be disch water drains. The source of water is GVMC & S permitted water consumption is as following after expansion of Su St.no Purpose Purpose Consented quantity as per CFE (Exp) dt: 2 ndustrial Cooling Makeup) - fresh 10,350 (After expansion) 5 Domestic & other 6 Customized fertilizer 9 Subtotal (1) 19,350* 7 Industrial Cooling - 84,600 Sea water Grand total 94,950 Vater consumption shall be restricted to 1 EC Order dt: 14.07.2017. The maximum waste water gener 10 St. Effluents 216.02.2019 (KLD) 1 1 Process & 1800 2100 10.00 water 81,600 22.001g 11 Process & 1800 100 12 Cooling water 81,600 200 wown 3100 530<	all pollution control systems shall be provide The industry shall properly maintain separation drains. No effluents shall be discharged in towater drains. The source of water is GVMC & Sea. The mapermitted water consumption is as following after expansion of Sulphuric action St.no Purpose Consented quantity as per CFE (Exp) dt: 25.04.2019 (CLD) Proposed Quantity (Expansion) 1 Process & Washes 2 Industrial Cooling Mathemp - Itresh water 4 Boller Feed 5 Domestic & other 6 Customized fetiblizer plant 1 10,350 4 Boller Feed 7 Industrial Cooling - Sea water 8 Subtotal (1) 10,350 1800 7 Industrial Cooling - Sea water 6 Customized fetiblizer plant 10 State consumption shell be restricted to 10,350 KLD as mater EC Order dt: 14.07.2017. The maximum waste water generation shall the following after expansion of Sulphuric and 28.84.2019 (KLD) 1 Process & 1800 1 Process & 1800 1 Process & 1800 1 Process & 1800 1 </td <td>The source of water is GVMC & Sea. The maximum permitted water consumption is as following after expansion of Sulphuric acid plant Steps of the second performance of the second performance</td>	The source of water is GVMC & Sea. The maximum permitted water consumption is as following after expansion of Sulphuric acid plant Steps of the second performance

.

1

-

	Source of	Treatment	Mode of Ball discont	
	effluent Process & washing effluents & Boiler/cooling tower blow downs, DM plant rejects	Trastment ETP consists of Equalization → Reaction tank 1 → Clariflocculator - 1 → Burler tank → Reaction tank 2 → Clariflocculator - 2 → Reaction tank 3 cum Neutralization tank → Holding tank → Reaction tank - 4 & filter press.	Node of final disposal Both treated sewage water and process effuents shall be recycled / reused within factory premises to achieve Zero discharge except during the rainy season". In case of low load plant operations and during rainy season, the quantity of effuent generated from Phosphoric add post enhancement is 1800 KLD which shall be treated in the existing ETP plant and discharged along with once through cooling blow down through Meghadrigedda surplus course that joins sea.	
	Ohution coolers Once through cooling		nto Meghadrigedda surplus course which oins Sea	
	Domestic effluents	STP	Recycled / reused within the factory premises.	
6	to prevent	ts of the ETP & STP ground water poll aintained properly		
7	premises to rainy seaso	fluents shall be rec o achieve zero disc on, as stipulated in t. 14.07.2017.		
8	conform to	the water dischar	ted waste water shall ge standards, as stipulated i of CFO order dt. 19.03.2018	
9		ry shall provide ma It the inlet and out	Complied. Provided magnetic flow meters with totalizers at the inlet and outlet of ETP.	
10	Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas. All pipe valves, sewers, drains shall be leak proof.			Complied
11.	sewers, drains shall be leak proof. The Air pollution Control equipment shall be maintained properly and shall comply with the following for controlling air pollution after expansion of Sulphuric acid plant:			Complied All Stacks are connected to CPCB & SPCB sites and also third Party analysis was done once in month, Here with enclosed as Annexure - 02 for your reference

[Detai	-		(Danas II)	Bacch	Details of Air	
	N SI	of Stac		Attached to	Capecit y	Stack height (Meters)	Pollution	
		Stack	-	Sulphuric Acid Plant (Old)	1700 TPD	69	Alkali scrubber	
	2	Stack	-	Sulphuric Acid Plant (New)	400 TPO.	50	Alkali scrubber	
	3	Stack 3	-	Phosphoric Acid Plant	700 TPO	33	Evaporator followed by series of barometric condensers	
	4	Stack 4	-	Rock Phosphate Grinding unit (Old Bail Mill)	40 TPH	45	Bag Silers	
	5	Stack S	-	Rock Phosphate Grinding unit (New Ball Mill)	20 TPH	45	Bag filters	
	6	Stack 6 10 8		Complex fertilizer Plant Complex A- Train Complex B- Train Complex C- Train	3900 TPD	37.8 37.8 37.3	4 stage scrubbing system (for ammonia recovery and multi cyclone 6 Nos.) X 3 Nos.	
		Stack 9		Customized fertilizer plant Driter (2 Nos.) & process coolers (2 Nos.) of customized fertilizer	300 TPD	30	Cyclones followed by wet scrubber	
	6_	Stack 10		Oil Fired boiler through 5 MW T.G. Set	48 TPH	30.48		
		Stack 11		Oil Fired Bailer	31 TPH	30.45		
	10	Stack 12		OI Fired Boller	1.5 TPH	30.48		
	11	Stack 13 Stack		D.G. Set	6 MW	operating an emergend	enclosures	
	13	14 Stack		Phosphoric Acid	700	condition 33	Evaporator	
		15		Plant	TPD		followed by	
							series of barometric condensers fumes acrubber	
			Staci 16	k Rock Phosphale grinding Units	75 TPH	45	Bag Filters	
			Staci 17		40 TPH & 5 MW	56	ESP	
			Slaci 16	k- Rock Phosphale grinding unit	30 TPH	30	Bag filters	
				<u></u>				
	New	etack a	s pe	CFE expansion :				
		Stack-1	-	Sulphuric Acid Plant	1500 TF		Alkali scrubber	
12.	evap	The industry shall properly maintain 400 MTPD evaporation system for Phosphoric Acid including Fluorine recovery system as stipulated in the EC Order.					Complied	
13.			<u> </u>					Complied
т <i>џ</i> .		A sampling port with removable dummy of not less than 15 cm diameter shall be provided in the stack at a						
				8 times the di	•			
							platform with	
				dder shall be			•	

-

×.

							.	
	1				ccommoda			
					P 250 V plu			
	on the platform.							
14	1			•	perly main	-	Complied.	
			•		cording sy	Installed online pH measuring facility		
	pr	ov	ided to	treat the p	process em	with auto recording system.		
15	Th	e	industr	y shall i	mplement	Noted by Industry and will comply		
	со	nt	rol all fu	igitive emi	ssions from	n the plant.		
16	Th	e	propon	ent shall	ensure cor	npliance of the Nation	al	Complied.
	An	nb	ient Air	quality st	andards no	otified by MoEF, Gol vid	le	Third-Party NAAQS report, Here with
	no	tif	ication	No.GSR.8	326 (E), d	lated.16-11-2009 durir	וg	enclosed as Annexure-03 for your
	Со	ns	truction	and regu	lar operation	onal phase of the proje	ct	reference
	at	th	e peripl	nery.				·
Solid/	Haza	arc	dous Wa	aste:				
17	Th	e	industry	/ shall cor	nply with t	he following for dispos	al	Complied.
	of	Sc	olid Was	te after ex	pansion of	Sulphuric acid plant:		Hazardous Waste annual return for the
		3	Name of	Quantity				year 2023-24 is submitted on
		N	the	As per CFE (Exp) dt: 26.04.2019	Proposed Quantity (Expansion)	Mode of Disposal		06.05.2024 Submitted Form-IV annual returns PCB ack. The copy enclosed as
		-01	Acid residues (Tank bottom sludge)	45 TPA	6007	Recycled into phosphonic acid reactor.		Annexure-04 is for your reference.
	1	2	LSHS Sludge	10 TPA	—	TSDF, for indineration		
		3	Sulphur muck (Sulphur sludge)	750 TPA	550 TPA	Recycled into the process as a faler material in the granulation plant.		
		4	Spent catalyst	65 TPA	50 TPA	Authorized reprocessors recyclers (or) TSDF, Parawada for secured land fill.		
		5	Used lubricating oil/drained oil	50 KLPA		To authorized Re-processors / Recyclers / to the Cement Industries for co-processing in the kin.		
		6	Detoxified Containers and container liners	700 Nos.		To authorized agencies, after complete detoxification for re-use/ recycle.		
		7	Scrubbing	450 TPA	-	Reuse back in the process		
		8	E Wasle	25 TPA		Authorised e-waste recyclers /		
		9	Fly ash	25 TPD		To cement industries / brick		
10	manufacturing units							Noted and Being Follwed
18	The following rules and regulations notified by the MoEF & CC, Gol shall be implemented.							Noteu anu being ronweu
		а				ner wastes (Managemei	nt	
			and 1	Fransboun	dary Move	ment) Rules, 2016.		
		b). Plast	ic Waste N	/lanagemei	nt Rules, 2016.		
	1	С	. Mani	ufacture,	Storage an	us		
					0.0100	ia import of maratas		

1

.

		_
	d. Fly Ash Notification, 2016.	
	e. Batteries (Management & Handling) Rules, 2010.	
	f. E-waste (Management (Rules, 2016.	
	g. Construction and Demolition Waste Management	
	Rules, 2016.	
	h. Solid Waste Management Rules, 2016.	
	i. The Public Liability Insurance Act, 1991 and its	
	amendments thereof.	
Other	Conditions:	
19	The industry shall comply with the following:	Complied
	• The industry shall comply with all the conditions	
	stipulated in the CFO order within a year.	
	• The industry shall control the leakages in the Rock	
	Phosphate feeding area by April, 2020.	
	Setting up new Sulphuric acid plant with State-of-	
	Art technology and to achieve SO ₂ emission of	
	0.75 Kg SO ₂ /MT of acid (100%).	
1	 Reduction of SO₂ emission in Sulphuric acid plant-1 	×
	from 1 Kg SO ₂ /MT of acid to 0.8 Kg SO ₂ /MT of acid	
	through addition of high Vandadium content	
	catalyst in 5 th bed of the converter and higher	
	loading of catalyst into the converter.	
	 Using low sulphur coal of 0.50% sulphur content 	
	against 0.7% in coal fired boiler.	
	 Addition of lime stone powder into the coal fired 	
	boiler for improved absorption of SO ₂ from 50%	
	(as per earlier consideration), to 80%	
20	The industry shall submit compliance to the conditions	Complied
40	stipulated in the EC and CFE orders to the concerned	
	Regional Officer of APPCB every six months and shall	
	upload the same at APPCB website viz.,	
	https://pcb.ap.gov.in/UI/Submission Compliance-	
	of EC CFE CFO Direction.aspx.	
21	The industry submitted a copy of letter stating that the	Noted
4 A	MoEF&CC, Gol, New Delhi vide lr.dt:30-05-2018	
	addressed to M/s. Southern Petro Chemical Industries	
	Corporation (SPIC) clarified that the intermediate product	
	(Phosphoric Acid) is not covered under the purview of the	
	ELA notification 2006 and as such there is no requirement	
	of Environmental Clearance to the said project as stand	
	or Environmental clearance to the salu project as stand	

	alone. Similarly, in this case also EC is not required as	
	Sulphuric Acid is one of the raw materials/intermediates	
	for manufacture of Chemical fertilizer.	
22	The industry shall submit a report on recycling of treated	Complied
	effluent into the process to achieve zero discharge except	The Present Industry is following the
	during rainy season.	Zero discharge concept
23	Green belt shall be developed all along the boundary &	complied
	vacant spaces with tall growing tress with good canopy	
	and it shall not be less than 33% of the total area.	
24	Concealing the factual data or submission of false	Noted
	information / fabricated data and failure to comply with	26
	any of the conditions mentioned in this order attracts	
	action under the provisions of relevant pollution control	
	Acts.	
25	Notwithstanding anything contained in this conditional	Noted
	letter or consent, the Board hereby reserves its right and	
	power Under Sec.27(2) of Water (Prevention and Control	
	of Pollution) Act, 1974 and Under Sec.21(4) of Air	
	(Prevention and Control of Pollution) Act, 1981 to revoke	
	the order, to review any or all the conditions imposed	
	herein and to make such modifications as deemed fit and	
	stipulate any additional conditions.	
26	Any person aggrieved by an order made by the State	Noted and Complied
	Board Under Section 25, Section 26, Section 27 of Water	
	Act, 1974 or Section 21 of Air Act, 1981 may within thirty	
	days from the date on which the order is communicated	
	to him, prefer an appeal as per Andhra Pradesh Water	
	Rules, 1976 and Air Rules, 1982, to such authority	
	(hereinafter referred to as the Appellate Authority)	
	constituted Under Section 28 of Water (Prevention and	
	Control of Pollution) Act, 1974 and Section 31 of the Air	
	(Prevention and Control of Pollution) Act, 1981.	
		<u>.</u>

•

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

	Test Report No.	TLC/V	TLC/V/Env/CFL/24/0524 dt.01.06.2024				
	Description of Test	ETP O	ETP Outlet water Analysis				
	Name of the client	Corom	andel International	Limited, Vis	akhapatnam		
Locati	on of sampling	ETP O	ut let samples				
	Date of Collection	20.05.2	024				
	Anal	sis report o	of ETP Outlet water	for the Mon	th ofMAY-2024		
S.No	Parameter	units	ETP Outlet	APPCB	Protocol		
				LIMIT			
1	PH		7.8	6.5-8.0	IS:3025 Part 11-1983		
2	Total Suspended Solids	mgpl	18	100	IS:3025 Part 17-1984		
3	Oil & Grease	mgpl	NIL	10	IS:3025 Part 39-1991		
4	Ammonical	mgpl	15	50	APHA4500C		
	Nitrogen	31			32 		
5	Free Ammonical	mgpl	0.1	4	APHA4500C		
	Nitrogen						
6	Total Kjeldal	mgpl	25	100	APHA4500B		
	Nitrogen						
7	Nitrates	mgpl	0.1	10	APHA4500D		
8	Cyanides as CN	mgpl	<0.1	0.2	SM 4500CN E		
9	Arsenic as As	mgpl	< 0.02	0.2	SM3125		
10	Vanadium as V	mgpl	<0.1	0.2	SM3125		
11	Hexa valent	mgpl	< 0.02	0.1	SM3125		
	Chromium as Cr ⁶⁺						
12	Fluoride as F	mgpl	1.0	10	SM 4500 F- D		
13	Phosphates as P	mgpl	0.5	5.0	APHA4500D		
14	BOD	mgpl	14	100	IS:3025 Part 44-1993		
15	COD	mgpl	68	250	IS:3025 Part 58-2006		

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

	Test Report No.	TLC/V	/Env/CFL/22/0524		dt.01.06.2024
	Description of Test		utlet water Analysi	s	
	Name of the client	Corom	andel International	Limited, Vis	akhapatnam
	on of sampling		ut let samples	<u> </u>	
	Date of Collection	17.05.2			
	Analy		of STP Outlet water	r for the Mon	th ofMAY-2024
S.No	Parameter	units	STP Outlet	APPCB	Protocol
				LIMIT	
1	РН		7.5	6.5-8.0	IS:3025 Part 11-1983
2	Total Suspended Solids	mgpl	18	100	IS:3025 Part 17-1984
3	Oil & Grease	mgpl	NIL	10	IS:3025 Part 39-1991
4	Ammonical Nitrogen	mgpl	6.0	50	APHA4500C
5	Free Ammonical Nitrogen	mgpl	0.1	4	APHA4500C
6	Total Kjeldal Nitrogen	mgpl	16	100	APHA4500B
7	Nitrates	mgpl	0.1	10	APHA4500D
8	Cyanides as CN	mgpl	<0.1	0.2	SM 4500CN E
9	Arsenic as As	mgpl	<0.02	0.2	SM3125
10	Vanadium as V	mgpl	<0.1	0.2	SM3125
11	Hexa valent Chromium as Cr ⁶⁺	mgpl	<0.02	0.1	SM3125
12	Total Chromium	mgpl	<0.02	2.0	SM3125
13	Fluoride as F	mgpl	0.7	10	SM 4500 F- D
14	Phosphates as P	mgpl	0.3	5.0	APHA4500D
15	BOD	mgpl	15	100	IS:3025 Part 44-1993
16	COD	mgpl	75	250	IS:3025 Part 58-2006
17	Temperature difference between intake water and outlet	⁰ C	3	5 ⁰ e	ab and C

For TEAM Labs

TEAM Labs and Consultants

Registered Office :

ORIGINAL

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

					dt.01.06.2024			
	Test Report No	TLC/V/Env/CIL/		CEL	1.01.00.2024			
Description of Test		Source Emission Monitoring inside the CFL						
Name of the client		Coromandel International Limited, Visakhapatnam stacks attached to respective plants as per details given						
Lo	cation of sampling	stacks attached to	o respective plants as p	er detans given				
the second se	CE/ STACK EMISSION			MAY-2024	APPCB Standard			
S.No.	Stack attached to	Flow rate NM ³ /Hr	parameters	Conc. mg/NM ³	Limit			
1	Complex A	201756	Particulate matter	19	45 mg/NM ³			
	comprenen		Ammonia	65	165.0 mg/NM ³			
			Fluoride	. 1.1	4.0 mg/NM^3			
			Particulate	22				
2	Complex B	192853	matter		45 mg/NM ³			
-			Ammonia	45	165.0 mg/NM ³			
			Fluoride	0.9	4.0 mg/NM ³			
8			Particulate	21				
.3	Complex C	201756	matter		45 mg/NM ³			
1	complex c		Ammonia	55	165.0 mg/NM ³			
			Fluoride	1.1	4.0 mg/NM ³			
4			Sulphur dioxide	0.343Kg/MT (250mg/NM ³)	1 Kg/MT			
	Sulphuric acid plant-	97302	Sulphur trioxide	0.034Kg/MT (25mg/NM ³)	0.35 Kg/MT			
			Acid mist	Nil	20 mg/NM ³			
5	Sulphuric acid plant-	32245	Sulphur dioxide	0.154Kg/MT (80mg/NM ³⁾	0.65 Kg/MT			
	II		Sulphur trioxide	Nil	0.35 Kg/MT			
			Acid mist	Nil	20 mg/NM ³			
6	Phosphoric acid plant-1	111280	Particulate matter	42	50 mg/NM ³			
	plane		Fluoride	5.8	20 mg/NM ³			
7	Rock grinding unit (Old)	7900	Particulate matter	48	50 mg/NM ³			
1.1.1.25	(Old)		Total Fluoride	4.0	20 mg/NM ³			
8	Wharf Boiler	9908	Particulate matter	44	• 115 mg/NM ³			
9	Phosphoric acid plant-2	36517	Particulate matter	42	50 mg/NM ³			
	plant-2		Total Fluoride	4.7	20 mg/NM ³			
10	Rock grinding unit	7746	Particulate	4.7	50 mg/NM^3			
10	(New)	//40	matter					
			Total Fluoride	3.9	20 mg/NM ³			
11	New SAP-3	59413	Sulphur dioxide	0.058Kg/MT (60mg/NM ³)	1 Kg/MT			
			Sulphur trioxide	Nil	0.35 Kg/MT			
			Acid mist	Nil	20 mg/NM^3			
12	Boiler	108857	Particulate matter	40	50 mg/NM ³			

For TEAM Labs and Consultants

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

Test Repo	rt No.	TLC/V/Env/CIL/17/0	TLC/V/Env/CIL/17/0524			
Description	of Test	Ambient Air quality Monitoring inside the CFL				
Name of th	e client	Coromandel International Limited, Visakhapatnam				
Location of s	sampling	Stations as per details	and the second sec			
Period of M	1, 0	For the Month of MA				
Summ	ary of Ambient	Air quality Monitoring	Data for the Mon	th of MAY-2024		
Parameters		AAQ-1 Station at	AAQ-2	AAQ-3 Station at Gate -13		
		the Top of Cafeteria	Station near	(Near Bagging plant)		
			DG sets			
PM2.5	Minimum	31	38	37		
	Maximum	42	44	. 42		
	98%tile	42	. 44	42		
	Average	38	41	40		
PM 10	Minimum	67	70	72		
μg/M ³	Maximum	78	84	78		
	98%tile	78	84	78		
	Averäge	73	78	75		
	Minimum	13.8	21.0	14.6		
SO ₂	Maximum	23.5	29.5	16.3		
$\mu g/M^3$	Average	19.7	26.6	15.4		
	98%tile	23.5	29.5	16.3		
+	Minimum	18.6	21.8	18.8		
NO _X	Maximum	22.9	25.8	22.0		
$\mu g/M^3$	98%tile	22.9	25.8	22.0		
	Average	20.8	24.1	20.9		
	Minimum	0.025	0.04	0.02		
NH ₃	Maximum	0.04	0.06	0.04		
mg/M ³	98%tile	0.04	0.06	0.04		
	Average	0.04	0.05	0.035		
03	Minimum	16	18	16		
μg/M ³	Maximum	22	22	22		
	98%tile	22	22	22		
	Average	19	21	20		
CO	Minimum	0.1	0.2	0.1		
mg/M ³	Maximum	0.2	0.3	0.3		
	98%tile	0.2	0.3	0.3		
	Average	0.15	0.21	0.2		
Pb μg/M ³	<0.05	<0.05	<0.05	<0.05		
C6H6 ng/M ³	<0.05	<0.05	< 0.05	<0.05		
B(a)P ng/M ³	< 0.05	< 0.05	< 0.05	<0.05		
As ng/M ³	<0.05	<0.05	< 0.05	<0.05		
Ni ng/M ³	< 0.05	< 0.05	< 0.05	<0.05		

For TEAM Labs and Consultants

ORIGINAL

Registered Office :

B-115, 116, 117 & 509, Annapoorna Block, Aditya Enclave, Ameerpet, Hyderabad - 530038. Ph. : (O) 040-23748555 / 23748616, Fax : 040-23748666, Email : teamlabs@gmail.com

Laboratory Recognised by Ministry of Environment, Forests and Climate Change, Gol, New Delhi NABL Accredited Laboratory

TEST REPORT

Test Report No.		TLC/V/Env/CIL/18/0524 dt.01.06.2024				
Description of Test		Ambient Air quality Monitoring inside the CFL unit				
Name of t	he client	Coromandel International Limited, Visakhapatnam				
Location of	sampling	Stations as per detai	ls given			
Period of M		For the Month of M.				
Summary of Ambient Air qual		lity Monitoring Data f	or the Month of MAY-2024			
Parameters		AAQ-4 Station at Warf	AAQ-5 Station near VS	Г		
PM2.5	Minimum	35	36			
	Maximum	42	42			
	98%tile	42	42			
	Average	39	39			
PM 10	Minimum	69	68			
μg/M ³	Maximum	80	80			
	98%tile	80	80			
	Average	75	74			
	Minimum	12.5	12.2			
SO_2	Maximum	15.0	15.5			
μg/M ³	Average	13.9	13.8			
	98%tile	15.0	15.5			
	Minimum	16.4	18.3			
NO _X	Maximum	21.4	22.1			
μg/M ³	98%tile	21.4	22.1			
	Average	19.7	20.1			
	Minimum	0.02	0.04			
NH ₃	Maximum	0.03	0.07			
mg/M ³	98%tile	0.03	0.07			
2041/	Average	0.025	0.058			
O3	Minimum	16	18			
μg/M³	Maximum	22	22			
	98%tile	22	22			
	Average	18.8	19.8			
CO	Minimum	0.1	0.1			
mg/M ³	Maximum	0.3	0.3			
	98%tile	0.3	0.3			
	Average	0.21	0.2			
Pb μg/M ³	<0.05	<0.05	<0.05			
C6H6 ng/M ³	<0.05	<0.05	<0.05			
B(a)P ng/M ³	<0.05	< 0.05	<0.05	20		
As ng/M ³	<0.05	<0.05	<0.05	Z		
Ni ng/M ³	< 0.05	<0.05	<0.05	F		

For TEAM Labs and Consultants

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 Oll, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz : L24120AP1961PLC000892 CIN GSTIN: 37AAACC7852K1ZC

Date: 06.05.2024

EHS/APPCB/2024-040

LHS/AFFCD/2024-040					
	T	wave surgeousede where interesting outper-			
То	Ch. 1	अस्तीय अग			
The Environmental Engineer,	1 m	RH4611322351H IVR:827846113223			
A.P. Pollution Control Board,		RL MALKAPURAN S.8 (530011)			
D.No. 33-26-14 D/2,		Counter No:1.07/05/2024.10:33			
Near Sunrise Hospital,		TO: THE ENVIRONME. APPCB KASTURIBAI			
Pushpa Hotel Centre,		PIN:520010, Venkateswaraburam S.O			
Chalamalavari Street,	C	From:CORONANDEL .EHS HOD NALKAPUR			
Kasturibaipet, Vijayawada – 520010		Wt:240as.RE6=17.0			
		Aat:31.86(Cash)Tax:4.86			
Dear Sir,	167	(Track on www.indiapost.oov.in)			
·		<pre></pre>			

Sub: Coromandel International Limited- Visakhapatnam-Submission of Hazardous Waste Annual Returns in Form-4 - FY2023-2024 - Regarding.

Ref: Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016

We are herewith furnishing annual returns (for the period April'23 to March'24) in Form-4 as per "Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016" and amendment thereof under E (P) Act, 1986.

Kindly acknowledge the receipt of same.

Thanking you,

Yours Truly,

For COROMANDEL INTERNATIONAL LIMITED

Gnanasundaram M Vice President & Head Manufacturing.

Encl. As above

CC to: i) The Environmental Engineer, Regional Office, APPCB, Visakhapatnam.

Registered Office : Coromandel House, 1-2-10 Sardar Patel Road, Secunderabad-500 003 Telangana, India

Tel:: 91-40-27842034 / 27847212 Fax: 91-40-27844117 E-mail : mail@coromandel murugappa.com

Coromandel International Limited Post Box No. 1116, Sriharipuram, Malkapuram Post Visakhapatnam - 530 011, Andhra Pradesh, India Tel : 91-891-2578400 DID : 91-891-2893+Extn No Website : www.coromandel.biz CIN : L24120AP1961PLC000892 GSTIN : 37AAACC7852K1ZC

Date: 06.05.2024

EHS/APPCB/2024-040

То

The Environmental Engineer, A.P. Pollution Control Board, D.No. 33-26-14 D/2, Near Sunrise Hospital, Pushpa Hotel Centre, Chalamalavari Street, Kasturibaipet, Vijayawada – 520010

Dear Sir,

Sub: Coromandel International Limited- Visakhapatnam–Submission of Hazardous Waste Annual Returns in Form-4 – FY2023-2024 - Regarding.

Ref: Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016

We are herewith furnishing annual returns (for the period April'23 to March'24) in Form-4 as per "Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016" and amendment thereof under E (P) Act, 1986.

Kindly acknowledge the receipt of same.

Thanking you,

Yours Truly,

For COROMANDEL INTERNATIONAL LIMITED

Gnanasundaram M Vice President & Head Manufacturing.

Encl. As above

CC to: i) The Environmental Engineer, Regional Office, APPCB, Visakhapatnam.

				FORM-4			
				rules 6(5), 13(8), 16(6) and 20(2))			
				FOR FILING ANNUAL RETURNS			
(To be	submitted to	State Pollution Co	ont	trol Board by 30th day of June of every yea April to March]	r for the prec	eding period	
	1 Name and address of facility: 2 Authorisation No. and Date of issue:		Γ	Coromandel International Limited,			
1			:	Sriharipuram, Malkapuram (PO), Visakhapatnam-530011, Andhra Pradesh, India.			
_			┢	Phone: 0891-2578400			
2			:	Issued date: 30.09.2022 Valid Upto 31.08.2027			
	13502.		┢╸	M. Gnanasundaram			
3	Name of the authorised		:	VP-Head Manufacturing			
	person and full address with			Sriharipuram, Malkapuram (PO), Visakhapatnam-530011, Andhra			
	telephone, fax number and e-			Pradesh, India.			
	mail:	mail:		Phone: 0891-2578400			
	Droduction d	Production during the year		Complex plant	1165048		
4		u ,	ŀ		861859	MT/Annum	
4		(product wise), wherever		Sulphuric acid			
	applicable	applicable		Phosphoric acid	370617	[
		Part A. To b)e	filled by hazardous waste generato	<u>rs</u>		
			:	Name of the Hazardous waste	Quantity	generated	
				1) Acid residues (Tank bottom sludge)	25.000	мт	
				2) Sulphur muck (Sulphur sludge)	940.000	MT	
				3) Spent Catalyst	48.820		
				4) Used lubricating oil/drained oil	13.620	KL	
1	Total quantity of waste generated category wise			5) Detoxified Containers	2438.000	No's	
				6) LSHS Sludge	4.070	МТ	
				7) Scrubbing sludge	395.000	MT	
				8) ETP sludge	490.000	MT	
				9) Off specified ,expired chemicals & lab chemicals etc.	0.000	MT	
				10) Glass wool	0.000	MT	
				11) Insulation Puf	0.000	MT	
2	Quantity dispatched	(i) to disposal facility (Ramky)	:	Name of the Hazardous waste	Quantity dispatched		
				1) Spent Catalyst	33.820		
				2) LSHS Sludge	6.770	<u>MT</u>	
				3) Off specified ,expired chemicals & lab chemicals etc.	0	мт	
				4) Glass wool		MT	
				5) Insulation Puf		MT	
		(ii) to recycler or co-processors or pre-processor	1	1) Used lubricating oil/drained oil	14.020	KL 💠	
				2) Detoxified Containers and container liners	2348	No's	
		(iii) Others					

.

			FORM-4		
			rules 6(5), 13(8), 16(6) and 20(2)) FOR FILING ANNUAL RETURNS		
		-			
To be	submitted to State Pollution Co	Int	rol Board by 30th day of June of every year April to March]	for the pred	eding perio
			Name of the Hazardous waste	Quanti	ty utilised
3			1) Acid residues (Tank bottom sludge)		мт
	Quantity utilised in-house, if any -		2) Sulphur muck (Sulphur sludge)		MT
2			3) Scrubbing sludge		MT
			3) ETP sludge		MT
_		Н	Name of the Hazardous waste		ly Storage
			1) Acid residues (Tank bottom sludge)		MT
			2) Sulphur muck (Sulphur sludge)		MT
			3) Spent Catalyst		MT
			4) Used lubricating oil/drained oil		KL.
			5) Detoxified Containers and container		156
	Quantity in storage at the end		- /	90	No's
4	of the year –	1	liners		мт
			6) LSHS Sludge		MT
			7) Scrubbing sludge		MT
			8) ETP sludge		
			9) Off specified ,expired chemicals & lab		MT
			10) Glass wool		MT
	1		11) Insulation Puf		MT
	Part B. To be filled by	Tr	eatment, storage and disposal facilit	<u>y operato</u>	<u>rs</u>
1	Total quantity received -	;			
2	Quantity in stock at the	:		· -	
3	Quantity treated –	;		2_	
	Quantity disposed in landfills as such and after treatment – Quantity incinerated (if		licae		
4			Not applicable		
			, ~ ~		
5	applicable) -	1	l bo		
	Quantity processed other than	⊢			
6	specified above -				
	Quantity in storage at the end of the year -				
7					
	Part C. To be fille	dI	by recyclers or co-processors or othe	r users	
	Quantity of waste received	Γ			
1	during the year –	:			
-	(i) domestic sources	Ĺ			
	Quantity in stock at the	Γ			
2	beginning of the year -	:			
	Quantity recycled or co-	Γ	10	>	
3	processed or used –	1	apir	-	
	Quantity of products	F	Not applicable		
4	dispatched (wherever		190		
4		ľ	1 Ator		
	applicable) –	┝			
5	Quantity of waste generated -	:	-		
6	Quantity of waste disposed -	:			
7	Quantity re-exported				
7	(wherever applicable)-	ŀ			
	Quantity in storage at the end				
8	of the year -	F	ا		
		-		e a	щ
			1 V X	brareat	
)ate :	06.05.2024		Signature of	the Occupi	er or
			Operator of th		
lace:	Visakhapatnam.		Operator of th	e uispusdi	

.

EHS2-Vizag-Coromandel

From:	Nagarjuna-P-Mgr-EHS-Vizag-Coromandel			
Sent:	07 May 2024 15:53			
То:	rovspappcb@gmail.com			
Cc:	EHS2-Vizag-Coromandel; Nageswara Rao G-AsstMgr-EHS-Vizag-Coromandel; Subhradip Mondal-Mgr-Environment-Vizag-			
	Coromandel; Nagaraju D-AGM-EHS-Vizag-Coromandel; Vinod Kumar Mishra-Sr.GM-EHS-Vizag-Coromandel			
Subject:	Reg. Submission of Hazardous waste annual report of form-iv for the period of April 2023- Mar 2024			
Attachments:	Hazardous Waste Annual Returns (Form -4) 2023- to 2024.pdf			

Dear Sir,

Herewith submitting **Hazardous waste annual report of Form-4 for the period of April 2023- Mar 2024** by Coromandel International Limited, Visakhapatnam.

Same original copy along with backup documents send to head office, Vijayawada through register post. Same copy again submitted to your regional office , Visakhapatnam on **07.05.2024** as per your instruction.

Regards, Nagarjuna P Manager-Environment 9100443439

SAVE ENVIRONMENT SAVE LIFE

